Publications by authors named "Timothy DelSole"

This paper proposes algorithms for estimating parameters in Earth System Models (ESMs), specifically focusing on simulations that have not yet achieved statistical equilibrium and display climate drift. The basic idea is to treat ESM time series as outputs of an autoregressive process, with parameters that depend on those of the ESM. The maximum likelihood estimate of the parameters and the associated uncertainties are derived.

View Article and Find Full Text PDF

This paper derives a criterion for deciding conditional independence that is consistent with small-sample corrections of Akaike's information criterion but is easier to apply to such problems as selecting variables in canonical correlation analysis and selecting graphical models. The criterion reduces to mutual information when the assumed distribution equals the true distribution; hence, it is called mutual information criterion (MIC). Although small-sample Kullback-Leibler criteria for these selection problems have been proposed previously, some of which are not widely known, MIC is strikingly more direct to derive and apply.

View Article and Find Full Text PDF

Assessments of climate forecast skill depend on choices made by the assessor. In this perspective, we use forecasts of the El Niño-Southern-Oscillation to outline the impact of bias-correction on skill. Many assessments of skill from hindcasts (past forecasts) are probably overestimates of attainable forecast skill because the hindcasts are informed by observations over the period assessed that would not be available to real forecasts.

View Article and Find Full Text PDF

Here we examine the skill of three, five, and seven-category monthly ENSO probability forecasts (1982-2015) from single and multi-model ensemble integrations of the North American Multimodel Ensemble (NMME) project. Three-category forecasts are typical and provide probabilities for the ENSO phase (El Niño, La Niña or neutral). Additional forecast categories indicate the likelihood of ENSO conditions being weak, moderate or strong.

View Article and Find Full Text PDF

This paper shows that the most predictable components of internal variability in coupled atmosphere-ocean models are remarkably similar to the most predictable components of climate models without interactive ocean dynamics (i.e., models whose ocean is represented by a 50-m-deep slab ocean mixed layer with no interactive currents).

View Article and Find Full Text PDF