Publications by authors named "Timothy Danford"

STEREO is a novel algorithm that discovers cis-regulatory RNA interactions by assembling complete and potentially overlapping same-strand RNA transcripts from tiling expression data. STEREO first identifies coherent segments of transcription and then discovers individual transcripts that are consistent with the observed segments given intensity and shape constraints. We used STEREO to identify 1446 regions of overlapping transcription in two strains of yeast, including transcripts that comprise a new form of molecular toggle switch that controls gene variegation.

View Article and Find Full Text PDF

We generated a high-resolution whole-genome sequence and individually deleted 5100 genes in Sigma1278b, a Saccharomyces cerevisiae strain closely related to reference strain S288c. Similar to the variation between human individuals, Sigma1278b and S288c average 3.2 single-nucleotide polymorphisms per kilobase.

View Article and Find Full Text PDF

Background: Genome-wide approaches have begun to reveal the transcriptional networks responsible for pluripotency in embryonic stem (ES) cells. Chromatin Immunoprecipitation (ChIP) followed either by hybridization to a microarray platform (ChIP-chip) or by DNA sequencing (ChIP-PET), has identified binding targets of the ES cell transcription factors OCT4 and NANOG in humans and mice, respectively. These studies have provided an outline of the transcriptional framework involved in maintaining pluripotency.

View Article and Find Full Text PDF

We present GSE, the Genomic Spatial Event database, a system to store, retrieve, and analyze all types of high-throughput microarray data. GSE handles expression datasets, ChIP-chip data, genomic annotations, functional annotations, the results of our previously published Joint Binding Deconvolution algorithm for ChIP-chip, and precomputed scans for binding events. GSE can manage data associated with multiple species; it can also simultaneously handle data associated with multiple 'builds' of the genome from a single species.

View Article and Find Full Text PDF

We demonstrate that the binding sites for highly conserved transcription factors vary extensively between human and mouse. We mapped the binding of four tissue-specific transcription factors (FOXA2, HNF1A, HNF4A and HNF6) to 4,000 orthologous gene pairs in hepatocytes purified from human and mouse livers. Despite the conserved function of these factors, from 41% to 89% of their binding events seem to be species specific.

View Article and Find Full Text PDF

Direct physical information that describes where transcription factors, nucleosomes, modified histones, RNA polymerase II and other key proteins interact with the genome provides an invaluable mechanistic foundation for understanding complex programs of gene regulation. We present a method, joint binding deconvolution (JBD), which uses additional easily obtainable experimental data about chromatin immunoprecipitation (ChIP) to improve the spatial resolution of the transcription factor binding locations inferred from ChIP followed by DNA microarray hybridization (ChIP-Chip) data. Based on this probabilistic model of binding data, we further pursue improved spatial resolution by using sequence information.

View Article and Find Full Text PDF

We have designed a zebrafish genomic microarray to identify DNA-protein interactions in the proximal promoter regions of over 11,000 zebrafish genes. Using these microarrays, together with chromatin immunoprecipitation with an antibody directed against tri-methylated lysine 4 of Histone H3, we demonstrate the feasibility of this method in zebrafish. This approach will allow investigators to determine the genomic binding locations of DNA interacting proteins during development and expedite the assembly of the genetic networks that regulate embryogenesis.

View Article and Find Full Text PDF

We mapped the transcriptional regulatory circuitry for six master regulators in human hepatocytes using chromatin immunoprecipitation and high-resolution promoter microarrays. The results show that these regulators form a highly interconnected core circuitry, and reveal the local regulatory network motifs created by regulator-gene interactions. Autoregulation was a prominent theme among these regulators.

View Article and Find Full Text PDF

DNA-binding transcriptional regulators interpret the genome's regulatory code by binding to specific sequences to induce or repress gene expression. Comparative genomics has recently been used to identify potential cis-regulatory sequences within the yeast genome on the basis of phylogenetic conservation, but this information alone does not reveal if or when transcriptional regulators occupy these binding sites. We have constructed an initial map of yeast's transcriptional regulatory code by identifying the sequence elements that are bound by regulators under various conditions and that are conserved among Saccharomyces species.

View Article and Find Full Text PDF