Lattices remain an attractive class of structures due to their design versatility; however, rapidly designing lattice structures with tailored or optimal mechanical properties remains a significant challenge. With each added design variable, the design space quickly becomes intractable. To address this challenge, research efforts have sought to combine computational approaches with machine learning (ML)-based approaches to reduce the computational cost of the design process and accelerate mechanical design.
View Article and Find Full Text PDFWe demonstrate an additive manufacturing approach to produce gradient refractive index glass optics. Using direct ink writing with an active inline micromixer, we three-dimensionally print multimaterial green bodies with compositional gradients, consisting primarily of silica nanoparticles and varying concentrations of titania as the index-modifying dopant. The green bodies are then consolidated into glass and polished, resulting in optics with tailored spatial profiles of the refractive index.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2020
Direct ink writing (DIW) three-dimensional (3D) printing provides a revolutionary approach to fabricating components with gradients in material properties. Herein, we report a method for generating colloidal germania feedstock and germania-silica inks for the production of optical quality germania-silica (GeO-SiO) glasses by DIW, making available a new material composition for the development of multimaterial and functionally graded optical quality glasses and ceramics by additive manufacturing. Colloidal germania and silica particles are prepared by a base-catalyzed sol-gel method and converted to printable shear-thinning suspensions with desired viscoelastic properties for DIW.
View Article and Find Full Text PDFWe demonstrate a scalable method to create metallic nanowire arrays and meshes over square-centimeter-areas with tunable sub-100 nm dimensions and geometries using the shear alignment of block copolymers. We use the block copolymer poly(styrene)-b-poly(2-vinyl pyridine) (PS-P2VP) since the P2VP block complexes with metal salts like Na2PtCl4, thereby enabling us to directly pattern nanoscale platinum features. We investigate what shear alignment processing parameters are necessary to attain high quality and well-ordered nanowire arrays and quantify how the block copolymer's molecular weight affects the resulting Pt nanowires' dimensions and defect densities.
View Article and Find Full Text PDFSilica inks are developed, which may be 3D printed and thermally processed to produce optically transparent glass structures with sub-millimeter features in forms ranging from scaffolds to monoliths. The inks are composed of silica powder suspended in a liquid and are printed using direct ink writing. The printed structures are then dried and sintered at temperatures well below the silica melting point to form amorphous, solid, transparent glass structures.
View Article and Find Full Text PDF