Device failure from diffusion short circuits in microelectronic components occurs via thermally induced migration of atoms along high-diffusivity paths: dislocations, grain boundaries, and free surfaces. Even well-annealed single-grain metallic films contain dislocation densities of about 10 m; hence dislocation-pipe diffusion (DPD) becomes a major contribution at working temperatures. While its theoretical concept was established already in the 1950s and its contribution is commonly measured using indirect tracer, spectroscopy, or electrical methods, no direct observation of DPD at the atomic level has been reported.
View Article and Find Full Text PDFHighly oriented [1 1 0] Bi2Te3 films were obtained by pulsed electrodeposition. The structure, composition, and morphology of these films were characterized. The thermoelectric figure of merit (zT), both parallel and perpendicular to the substrate surface, were determined by measuring the Seebeck coefficient, electrical conductivity, and thermal conductivity in each direction.
View Article and Find Full Text PDFTitanium nitride (TiN) is a plasmonic material having optical properties resembling gold. Unlike gold, however, TiN is complementary metal oxide semiconductor-compatible, mechanically strong, and thermally stable at higher temperatures. Additionally, TiN exhibits low-index surfaces with surface energies that are lower than those of the noble metals which facilitates the growth of smooth, ultrathin crystalline films.
View Article and Find Full Text PDFThere is national and international recognition of the importance of innovation, technology transfer, and entrepreneurship for sustained economic revival. With the decline of industrial research laboratories in the United States, research universities are being asked to play a central role in our knowledge-centered economy by the technology transfer of their discoveries, innovations, and inventions. In response to this challenge, innovation ecologies at and around universities are starting to change.
View Article and Find Full Text PDFJ Phys Condens Matter
October 2012
Nitride-based metal/semiconductor superlattices are promising candidates for high-temperature thermoelectric applications. Motivated by recent experimental studies, we perform first-principles density functional theory based analysis of electronic structure, vibrational spectra and transport properties of HfN/ScN metal/semiconductor superlattices for their potential applications in thermoelectric and thermionic energy conversion devices. Our results suggest (a) an asymmetric linearly increasing density of states and (b) flattening of conduction bands along the cross-plane Γ-Z direction near the Fermi energy of these superlattices, as is desirable for a large power factor.
View Article and Find Full Text PDFSuperparamagnetic microbeads play an important role in a number of scientific and biotechnology applications including single-molecule force measurements, affinity separation, and in vivo and in vitro diagnostics. Magneto-optically active nanorods composed of single-crystalline Au and polycrystalline Fe segments were synthesized with diameters of 60 or 295 nm using templated electrodeposition. The Fe section was magnetically soft and had a saturation magnetization of approximately 200 emu/g, resulting in a 10-fold increase in magnetization relative to that iron oxide nanoparticles.
View Article and Find Full Text PDF(In, Ga)N nanostructures show great promise as the basis for next generation LED lighting technology, for they offer the possibility of directly converting electrical energy into light of any visible wavelength without the use of down-converting phosphors. In this paper, three-dimensional computation of the spatial distribution of the mechanical and electrical equilibrium in nanoheterostructures of arbitrary topologies is used to elucidate the complex interactions between geometry, epitaxial strain, remnant polarization, and piezoelectric and dielectric contributions to the self-induced internal electric fields. For a specific geometry-nanorods with pyramidal caps-we demonstrate that by tuning the quantum well to cladding layer thickness ratio, h(w)/h(c), a minimal built-in electric field can be experimentally realized and canceled, in the limit of h(w)/h(c) = 1.
View Article and Find Full Text PDFHigh-quality, ordered nanopores in semiconductors are attractive for numerous biological, electrical, and optical applications. Here, GaN nanorods with continuous pores running axially through their centers were grown by organometallic vapor phase epitaxy. The porous nanorods nucleate on an underlying (0001)-oriented GaN film through openings in a SiN(x) template that are milled by a focused ion beam, allowing direct placement of porous nanorods.
View Article and Find Full Text PDFDislocation filtering in GaN by selective area growth through a nanoporous template is examined both by transmission electron microscopy and numerical modeling. These nanorods grow epitaxially from the (0001)-oriented GaN underlayer through the approximately 100 nm thick template and naturally terminate with hexagonal pyramid-shaped caps. It is demonstrated that for a certain window of geometric parameters a threading dislocation growing within a GaN nanorod is likely to be excluded by the strong image forces of the nearby free surfaces.
View Article and Find Full Text PDFWe report a metalization technique for electrically addressing templated vertical single-walled carbon nanotubes (SWNTs) using in situ palladium (Pd) nanowires. SWNTs are synthesized from an embedded catalyst in a modified porous anodic alumina (PAA) template. Pd is electrodeposited into the template to form nanowires that grow from an underlying conductive layer beneath the PAA and extend to the initiation sites of the SWNTs within each pore.
View Article and Find Full Text PDFUsing a shielded growth approach and N2-annealed, nearly monodispersed Fe2O3 nanoparticles synthesized by interdendritic stabilization of Fe3+ species within fourth-generation poly(amidoamine) dendrimers, carbon nanotubes and nanofibers were successfully grown at low substrate temperatures (200-400 degrees C) by microwave plasma-enhanced chemical vapor deposition.
View Article and Find Full Text PDFA fourth-generation (G4) poly(amidoamine) (PAMAM) dendrimer (G4-NH2) has been used as a template to deliver nearly monodispersed catalyst nanoparticles to SiO2/Si, Ti/Si, sapphire, and porous anodic alumina (PAA) substrates. Fe2O3 nanoparticles obtained after calcination of the immobilized Fe3+/G4-NH2 composite served as catalytic "seeds" for the growth of single-wall carbon nanotubes (SWNTs) by microwave plasma-enhanced CVD (PECVD). To surmount the difficulty associated with SWNT growth via PECVD, reaction conditions that promote the stabilization of Fe nanoparticles, resulting in enhanced SWNT selectivity and quality, have been identified.
View Article and Find Full Text PDF