Guillain-Barré syndrome (GBS) is an autoimmune-mediated disease triggered by a preceding infection. A substantial body of evidence implicates antibodies to various gangliosides in subtypes of GBS. A significant proportion of patients with acute demyelinating subset of GBS have IgG antibodies against peripheral nervous system myelin specific neolactogangliosides such as LM1 and Hex-LM1.
View Article and Find Full Text PDFNeuregulins (NRGs) are a family of growth factors which bind to the erbB family of tyrosine kinase receptors. The exact nature and interaction of specific NRG isoforms and erbB receptors that occur during the development of the nervous system have not been reported. In order to better understand the role that different NRG isoforms and erbB receptors play in the differentiation, proliferation, and survival of neurons and glial cells, we isolated protein and mRNA from dorsal root ganglia of rat pups between embryonic day (E) 13 and postnatal day (P) 15.
View Article and Find Full Text PDFNeuregulins (NRGs) are growth factors present in neurons and glial cells of the central and peripheral nervous systems and play a role in the survival, proliferation, and differentiation of these cells. We now report the localization of the two major isoforms of NRG (alpha and beta) and their receptors (erbB) in cultured Schwann cells and oligodendrocytes isolated from neonatal rat pups. Immunocytochemistry and Western blots for NRG and erbB receptors in defined subcellular fractions were utilized to assess cellular localization.
View Article and Find Full Text PDFBackground: Nuclear objects that have in common the property of being recognized by monoclonal antibodies specific for phosphoprotein epitopes and cytoplasmic intermediate filaments (in particular, SMI-31 and RT-97) have been reported in glial and neuronal cells, in situ and in vitro. Since neurofilament and glial filaments are generally considered to be restricted to the cytoplasm, we were interested in exploring the identity of the structures labeled in the nucleus as well as the conditions under which they could be found there.
Results: Using confocal microscopy and western analysis techniques, we determined 1) the immunolabeled structures are truly within the nucleus; 2) the phosphoepitope labeled by SMI-31 and RT-97 is not specific to neurofilaments (NFs) and it can be identified on other intermediate filament proteins (IFs) in other cell types; and 3) there is a close relationship between DNA synthesis and the amount of nuclear staining by these antibodies thought to be specific for cytoplasmic proteins.
Components of the extracellular matrix (ECM) of mammals have profound effects on the behavior and differentiation of many different cell types. Here, we report the results of biochemical and immunocytochemical investigations of the expression of SNAP-25 and phosphorylated neurofilament proteins (NFs) by cells grown on coverslips, cells cultured in EHS-ECM gels, and cells in situ in rat brain. SNAP-25 and phosphorylated NFs were detected by immunofluorescence in all these environments but were not detectable by Western analysis in extracts of cells grown on coverslips.
View Article and Find Full Text PDF