Synaptic dysfunction is a pathological feature in many neurodegenerative disorders, including Alzheimer's disease, and synaptic loss correlates closely with cognitive decline. Histone deacetylases (HDACs) are involved in chromatin remodeling and gene expression and have been shown to regulate synaptogenesis and synaptic plasticity, thus providing an attractive drug discovery target for promoting synaptic growth and function. To date, HDAC inhibitor compounds with prosynaptic effects are plagued by known HDAC dose-limiting hematological toxicities, precluding their application to treating chronic neurologic conditions.
View Article and Find Full Text PDFGerminal-center kinase-like kinase (GLK, Map4k3), a GCK-I family kinase, plays multiple roles in regulating apoptosis, amino acid sensing, and immune signaling. We describe here the crystal structure of an activation loop mutant of GLK kinase domain bound to an inhibitor. The structure reveals a weakly associated, activation-loop swapped dimer with more than 20 amino acids of ordered density at the carboxy-terminus.
View Article and Find Full Text PDFAlzheimer's disease is characterized by pathogenic oligomerization, aggregation, and deposition of amyloid beta peptide (Aβ), resulting in severe neuronal toxicity and associated cognitive dysfunction. In particular, increases in the absolute or relative level of the major long form of Aβ, Aβ42, are associated with increased cellular toxicity and rapidity of disease progression. As a result of this observation, screening to identify potential drugs to reduce the level of Aβ42 have been undertaken by way of modulating the proteolytic activity of the gamma secretase complex without compromising its action on other essential substrates such as Notch.
View Article and Find Full Text PDFEarly lead compounds in this gamma secretase modulator series were found to potently inhibit CYP3A4 and other human CYP isoforms increasing their risk of causing drug-drug-interactions (DDIs). Using structure-activity relationships and CYP3A4 structural information, analogs were developed that minimized this DDI potential. Three of these new analogs were further characterized by rat PK, rat PK/PD and rat exploratory toxicity studies resulting in selection of SPI-1865 (14) as a preclinical development candidate.
View Article and Find Full Text PDFIntroduction: Modulation of the gamma-secretase enzyme, which reduces the production of the amyloidogenic Aβ42 peptide while sparing the production of other Aβ species, is a promising therapeutic approach for the treatment of Alzheimer's disease. Satori has identified a unique class of small molecule gamma-secretase modulators (GSMs) capable of decreasing Aβ42 levels in cellular and rodent model systems. The compound class exhibits potency in the nM range in vitro and is selective for lowering Aβ42 and Aβ38 while sparing Aβ40 and total Aβ levels.
View Article and Find Full Text PDFInt J Alzheimers Dis
January 2013
The Amyloid Hypothesis states that the cascade of events associated with Alzheimer's disease (AD)-formation of amyloid plaques, neurofibrillary tangles, synaptic loss, neurodegeneration, and cognitive decline-are triggered by Aβ peptide dysregulation (Kakuda et al., 2006, Sato et al., 2003, Qi-Takahara et al.
View Article and Find Full Text PDFγ-Secretase modulators (GSM), which reduce amyloidogenic Aβ(42) production while maintaining total Aβ levels, and Notch-sparing γ-secretase inhibitors (GSIs) are promising therapies for the treatment of Alzheimer's Disease (AD). To have a safety margin for therapeutic use, GSMs and GSIs need to allow Notch intracellular domain (NICD) production, while preventing neurotoxic Aβ peptide production. Typically, GSI and GSM effects on these substrates are determined using two different cell lines, one for the measurement of enzyme activity against each substrate.
View Article and Find Full Text PDFA screen of a library of synthetic drugs and natural product extracts identified a botanical extract that modulates the processing of amyloid precursor protein (APP) in cultured cells to produce a lowered ratio of amyloid-beta peptide (1-42) (Aβ42) relative to Aβ40. This profile is of interest as a potential treatment for Alzheimer's disease. The extract, from the black cohosh plant (Actaea racemosa), was subjected to bioassay guided fractionation to isolate active components.
View Article and Find Full Text PDFThe discovery of a new series of γ-secretase modulators is disclosed. Starting from a triterpene glycoside γ-secretase modulator that gave a very low brain-to-plasma ratio, initial SAR and optimization involved replacement of a pendant sugar with a series of morpholines. This modification led to two compounds with significantly improved central nervous system (CNS) exposure.
View Article and Find Full Text PDFA series of triterpene-based γ-secretase modulators is optimized. An acetate present at the C24 position of the natural product was replaced with either carbamates or ethers to provide compounds with better metabolic stability. With one of those pharmacophores in place at C24, morpholines or carbamates were installed at the C3 position to refine the physicochemical properties of the analogues.
View Article and Find Full Text PDFThe crystal structures of rhodopsin depict the inactive conformation of rhodopsin in the dark. The 11-cis retinoid chromophore, the inverse agonist holding rhodopsin inactive, is well-resolved. Thr118 in helix 3 is the closest amino acid residue next to the 9-methyl group of the chromophore.
View Article and Find Full Text PDFPrevious studies by Papermaster and coworkers introduced the use of rhodopsin-green fluorescent protein (rho-GFP) fusion proteins in the construction of transgenic Xenopus laevis with retinal rod photoreceptor cell-specific transgene expression [Moritz et al., J. Biol.
View Article and Find Full Text PDF