Publications by authors named "Timothy D Culp"

Human cytomegalovirus (HCMV) is currently a major cause of congenital disease in newborns and organ failure in transplant recipients. Despite decades of efforts, an effective vaccine against HCMV has yet to be developed. However, the discovery of pentameric gH complex on viral surface which contains potent neutralizing epitopes may help enable development of an effective vaccine.

View Article and Find Full Text PDF

Direct at line monitoring of live virus particles in commercial manufacturing of vaccines is challenging due to their small size. Detection of malformed or damaged virions with reduced potency is rate-limited by release potency assays with long turnaround times. Thus, preempting batch failures caused by out of specification potency results is almost impossible.

View Article and Find Full Text PDF

Despite a 40-year effort, an effective vaccine against human cytomegalovirus (HCMV) remains an unmet medical need. The discovery of potent neutralizing epitopes on the pentameric gH complex (gH/gL/UL128/130/131) has reenergized HCMV vaccine development. Our whole-virus vaccine candidate, currently in a Phase I clinical trial, is based on the attenuated AD169 strain with restored expression of the pentameric gH complex.

View Article and Find Full Text PDF

Congenital infection of human cytomegalovirus (HCMV) is one of the leading causes of nongenetic birth defects, and development of a prophylactic vaccine against HCMV is of high priority for public health. The gH/gL/pUL128-131 pentameric complex mediates HCMV entry into endothelial and epithelial cells, and it is a major target for neutralizing antibody responses. To better understand the mechanism by which antibodies interact with the epitopes of the gH/gL/pUL128-131 pentameric complex resulting in viral neutralization, we expressed and purified soluble gH/gL/pUL128-131 pentameric complex and gH/gL from Chinese hamster ovary cells to >95% purity.

View Article and Find Full Text PDF

Human papillomavirus (HPV) 58 is a high-risk HPV type associated with progression to invasive genital carcinomas. We developed six monoclonal antibodies (mAbs) against HPV58 L1 virus-like particles that bind conformational epitopes on HPV58. The hybridoma cell lines were adapted to serum- and animal component-free conditions and the mAb supernatants were affinity-purified.

View Article and Find Full Text PDF

When grown in cultured cells, varicella-zoster virus (VZV) forms many aberrant light particles and produces low titers. Various studies have explored the reasons for such a phenotype and have pointed to impaired expression of specific late genes and at lysosomal targeting of egressing virions as possible causes. In the studies presented here, we report that the autophagic degradation pathway was induced at late time points after VZV infection of cultured cells, as documented by immunoblot analysis of the cellular proteins LC3B and p62/SQSTM1, along with electron microscopy analysis, which demonstrated the presence of both early autophagosomes and late autophagic compartments.

View Article and Find Full Text PDF

Shope papillomavirus or cottontail rabbit papillomavirus (CRPV) is one of the first small DNA tumour viruses to be characterized. Although the natural host for CRPV is the cottontail rabbit (Sylvilagus floridanus), CRPV can infect domestic laboratory rabbits (Oryctolagus cuniculus) and induce tumour outgrowth and cancer development. In previous studies, investigators attempted to passage CRPV in domestic rabbits, but achieved very limited success, leading to the suggestion that CRPV infection in domestic rabbits was abortive.

View Article and Find Full Text PDF

Current L1 virus-like particle (VLP) vaccines provide type-restricted protection against a small subset of the human papillomavirus (HPV) genotypes associated with cervical cancer, necessitating continued cytologic screening of vaccinees. Cervical cancer is most problematic in countries that lack the resources for screening or highly multivalent HPV VLP vaccines, suggesting the need for a low-cost, broadly protective vaccinogen. Here, N-terminal L2 polypeptides comprising residues 1 to 88 or 11 to 200 derived from HPV16, bovine papillomavirus type 1 (BPV1), or cottontail rabbit papillomavirus (CRPV) were produced in bacteria.

View Article and Find Full Text PDF

Peptides of the papillomavirus L2 minor capsid protein can induce antibodies (Ab) that neutralize a broad range of human papillomavirus (HPV) genotypes. Unfortunately, L2 is antigenically subdominant to L1 in the virus capsid. To induce a strong anti-L2 Ab response with cross-neutralizing activity to other mucosal types, chimeric virus-like particles (VLP) were generated in which HPV16 L2 neutralization epitopes (comprising L2 residues 69-81 or 108-120) are inserted within an immunodominant surface loop (between residues 133 and 134) of the L1 major capsid protein of bovine papillomavirus type 1 (BPV1).

View Article and Find Full Text PDF

We compared the neutralization abilities of individual monoclonal antibodies (MAb) of two large panels reactive with L1 epitopes of HPV-11 or HPV-16. Binding titers were compared using both L1-only VLPs and L1/L2 pseudovirions. While the VLPs were antigenically similar to the pseudovirions, clear differences in the surface exposure of some epitopes were evident with the HPV-16 particles.

View Article and Find Full Text PDF

A human papillomavirus (HPV) vaccine consisting of virus-like particles (VLPs) was recently approved for human use. It is generally assumed that VLP vaccines protect by inducing type-specific neutralizing antibodies. Preclinical animal models cannot be used to test for protection against HPV infections due to species restriction.

View Article and Find Full Text PDF

Papillomaviruses (PVs) demonstrate both tissue and species tropisms. Because PVs replicate only in terminally differentiating epithelium, the recent production of infectious PV particles in 293 cells marks an important breakthrough. In this article, we demonstrate that infectious PV particles produced in 293TT cells can cause papillomatous growths in the natural host animal.

View Article and Find Full Text PDF

Human papillomaviruses (HPVs) replicate only in the terminally differentiating epithelium of the skin and mucosa. While infection of basal keratinocytes is considered a requirement for permissive infection, it remains unclear whether virions can specifically target basal cells for adsorption and uptake following epithelial wounding. We present evidence that HPV binds specifically to laminin 5 (LN5), a component of the extracellular matrix (ECM) secreted by migrating and basal keratinocytes.

View Article and Find Full Text PDF

Human papillomaviruses (HPVs) have previously been shown to adsorb to cultured cells via membrane-associated heparan sulfate (HS) and alpha6 integrin. We demonstrate that cultured keratinocytes uniquely secrete a component into the basal extracellular matrix (ECM) which can function to adsorb HPV particles which can then be internalized by adherent cells. This uncharacterized basal ECM adsorption receptor was secreted by normal human epidermal keratinocytes (NHEK) and by each of the four keratinocyte-derived cell lines we examined, but not by non-keratinocyte cell lines.

View Article and Find Full Text PDF

Vaccination with papillomavirus L2 has been shown to induce neutralizing antibodies that protect against homologous type infection and cross-neutralize a limited number of genital HPVs. Surprisingly, we found that antibodies to bovine papillomavirus (BPV1) L2 amino acids 1-88 induced similar titers of neutralizing antibodies against Human papillomavirus (HPV)16 and 18 and BPV1 pseudoviruses and also neutralized HPV11 native virions. These antibodies also neutralized each of the other pseudovirus types tested, HPV31, HPV6 and Cottontail rabbit papillomavirus (CRPV) pseudoviruses, albeit with lower titers.

View Article and Find Full Text PDF

There has been much incongruence in reports addressing the rate at which papillomaviruses enter cultured cells. We used a recently developed QRT-PCR assay (J. Virol.

View Article and Find Full Text PDF

A peptide derived from the human papillomavirus type 16 (HPV-16) minor capsid protein, L2, has previously been reported to induce cross-neutralizing antibodies in mice. In this report, four HPV L2 peptides, including the HPV-16 peptide and its HPV type 6 and 11 homologues, along with extended peptides containing a conserved set of amino acids, were used to immunize rabbits and mice. Antibody responses were evaluated for specificity and ability to neutralize viral infection in vitro with a quantitative reverse transcriptase (RT)-polymerase chain reaction (PCR) assay.

View Article and Find Full Text PDF

Early events in the life cycle of the human papillomaviruses (HPV) have been difficult to investigate due to both the scarcity of authentic HPV virions and limitations in assays to detect and quantify nonpermissive infections in monolayer cell culture. We have developed a quantitative reverse transcription-PCR (QRT-PCR) assay for the E1( wedge )E4 transcript of HPV-11. This assay is both sensitive, and capable of differentiating between infections caused by a wide range of virus input.

View Article and Find Full Text PDF