Publications by authors named "Timothy Chico"

Article Synopsis
  • The study aims to explore the experiences of patients and clinicians in diagnosing cardiovascular disease (CVD) to inform the creation of better technological solutions.
  • Through focus groups and interviews with 32 participants, four main themes emerged around diagnostic challenges: symptom interpretation, patient characteristics, patient-clinician interactions, and systemic issues.
  • Key insights suggest that while both groups face communication and time challenges, patients struggle more with psychological and ambiguous symptoms, whereas clinicians focus on individual patient differences and the importance of building rapport.
View Article and Find Full Text PDF

Physical activity and cardiovascular disease (CVD) are intimately linked. Low levels of physical activity increase the risk of CVDs, including myocardial infarction and stroke. Conversely, when CVD develops, it often reduces the ability to be physically active.

View Article and Find Full Text PDF

A digital twin is a computer-based "virtual" representation of a complex system, updated using data from the "real" twin. Digital twins are established in product manufacturing, aviation, and infrastructure and are attracting significant attention in medicine. In medicine, digital twins hold great promise to improve prevention of cardiovascular diseases and enable personalised health care through a range of Internet of Things (IoT) devices which collect patient data in real-time.

View Article and Find Full Text PDF

Cardiovascular diseases kill 18 million people each year. Currently, a patient's health is assessed only during clinical visits, which are often infrequent and provide little information on the person's health during daily life. Advances in mobile health technologies have allowed for the continuous monitoring of indicators of health and mobility during daily life by wearable and other devices.

View Article and Find Full Text PDF

The past decade has seen a dramatic rise in consumer technologies able to monitor a variety of cardiovascular parameters. Such devices initially recorded markers of exercise, but now include physiological and health-care focused measurements. The public are keen to adopt these devices in the belief that they are useful to identify and monitor cardiovascular disease.

View Article and Find Full Text PDF

Introduction: Cardiovascular diseases are highly prevalent among the UK population, and the quality of care is being reduced due to accessibility and resource issues. Increased implementation of digital technologies into the cardiovascular care pathway has enormous potential to lighten the load on the National Health Service (NHS), however, it is not possible to adopt this shift without embedding the perspectives of service users and clinicians.

Methods And Analysis: A series of qualitative studies will be carried out with the aim of developing a stakeholder-led perspective on the implementation of digital technologies to improve holistic diagnosis of heart disease.

View Article and Find Full Text PDF

Hereditary haemorrhagic telangiectasia (HHT) causes arteriovenous malformations (AVMs) in multiple organs to cause bleeding, neurological and other complications. HHT is caused by mutations in the BMP co-receptor endoglin. We characterised a range of vascular phenotypes in embryonic and adult endoglin mutant zebrafish and the effect of inhibiting different pathways downstream of Vegf signalling.

View Article and Find Full Text PDF

Background: Hemodynamic wall shear stress (WSS) exerted on the endothelium by flowing blood determines the spatial distribution of atherosclerotic lesions. Disturbed flow (DF) with a low WSS magnitude and reversing direction promotes atherosclerosis by regulating endothelial cell (EC) viability and function, whereas un-DF which is unidirectional and of high WSS magnitude is atheroprotective. Here, we study the role of EVA1A (eva-1 homolog A), a lysosome and endoplasmic reticulum-associated protein linked to autophagy and apoptosis, in WSS-regulated EC dysfunction.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) is the world's leading cause of mortality. There is significant interest in using Artificial Intelligence (AI) to analyse data from novel sensors such as wearables to provide an earlier and more accurate prediction and diagnosis of heart disease. Digital health technologies that fuse AI and sensing devices may help disease prevention and reduce the substantial morbidity and mortality caused by CVD worldwide.

View Article and Find Full Text PDF

Endothelial cell (EC) sensing of disturbed blood flow triggers atherosclerosis, a disease of arteries that causes heart attack and stroke, through poorly defined mechanisms. The Notch pathway plays a central role in blood vessel growth and homeostasis, but its potential role in sensing of disturbed flow has not been previously studied. Here, we show using porcine and murine arteries and cultured human coronary artery EC that disturbed flow activates the JAG1-NOTCH4 signaling pathway.

View Article and Find Full Text PDF

With advancements in imaging techniques, data visualization allows new insights into fundamental biological processes of development and disease. However, although biomedical science is heavily reliant on imaging data, interpretation of datasets is still often based on subjective visual assessment rather than rigorous quantitation. This overview presents steps to validate image processing and segmentation using the zebrafish brain vasculature data acquired with light sheet fluorescence microscopy as a use case.

View Article and Find Full Text PDF

: Endothelial cell (EC) proliferation is a fundamental determinant of vascular development and homeostasis, and contributes to cardiovascular disease by increasing vascular permeability to blood-borne lipoproteins. Rodents have been traditionally used to analyse EC proliferation mechanisms in vascular health and disease; however, alternative models such as the zebrafish embryo allow researchers to conduct small scale screening studies in a physiologically relevant vasculature whilst reducing the use of mammals in biomedical research. models of EC proliferation are valuable but do not fully recapitulate the complexity of the situation.

View Article and Find Full Text PDF

The role of blood flow in vascular development is complex and context-dependent. In this study, we quantify the effect of the lack of blood flow on embryonic vascular development on two vascular beds, namely the cerebral and trunk vasculature in zebrafish. We perform this by analysing vascular topology, endothelial cell (EC) number, EC distribution, apoptosis, and inflammatory response in animals with normal blood flow or absent blood flow.

View Article and Find Full Text PDF

The cerebral vasculature plays a central role in human health and disease and possesses several unique anatomic, functional and molecular characteristics. Despite their importance, the mechanisms that determine cerebrovascular development are less well studied than other vascular territories. This is in part due to limitations of existing models and techniques for visualisation and manipulation of the cerebral vasculature.

View Article and Find Full Text PDF

Aims: Vertebrate heart development requires the complex morphogenesis of a linear tube to form the mature organ, a process essential for correct cardiac form and function, requiring coordination of embryonic laterality, cardiac growth, and regionalized cellular changes. While previous studies have demonstrated broad requirements for extracellular matrix (ECM) components in cardiac morphogenesis, we hypothesized that ECM regionalization may fine tune cardiac shape during heart development.

Methods And Results: Using live in vivo light sheet imaging of zebrafish embryos, we describe a left-sided expansion of the ECM between the myocardium and endocardium prior to the onset of heart looping and chamber ballooning.

View Article and Find Full Text PDF

Hereditary haemorrhagic telangiectasia (HHT) is characterised by arteriovenous malformations (AVMs). These vascular abnormalities form when arteries and veins directly connect, bypassing the local capillary system. Large AVMs may occur in the lungs, liver and brain, increasing the risk of morbidity and mortality.

View Article and Find Full Text PDF

Since the first description of COVID-19 in December 2019, more than 63,000 publications have described its virology, clinical course, management, treatment and prevention. Most physicians are now encountering, or will soon encounter, patients with COVID-19 and must attempt to simultaneously assimilate this avalanche of information while managing an entirely novel disease with few guiding precedents. It is increasingly clear that, although primarily a respiratory illness, COVID-19 is associated with cardiovascular complications.

View Article and Find Full Text PDF

Objective: Massage is ubiquitous in elite sport and increasingly common at amateur level but the evidence base for this intervention has not been reviewed systematically. We therefore performed a systematic review and meta-analysis examining the effect of massage on measures of sporting performance and recovery.

Design And Eligibility: We searched PubMed, MEDLINE and Cochrane to identify randomised studies that tested the effect of manual massage on measures of sporting performance and/or recovery.

View Article and Find Full Text PDF

Diabetes is associated with dysfunction of the neurovascular unit, although the mechanisms of this are incompletely understood and currently no treatment exists to prevent these negative effects. We previously found that the nitric oxide (NO) donor sodium nitroprusside (SNP) prevents the detrimental effect of glucose on neurovascular coupling in zebrafish. We therefore sought to establish the wider effects of glucose exposure on both the neurovascular unit and on behaviour in zebrafish, and the ability of SNP to prevent these.

View Article and Find Full Text PDF

We identify a novel endothelial membrane behaviour in transgenic zebrafish. Cerebral blood vessels extrude large transient spherical structures that persist for an average of 23 min before regressing into the parent vessel. We term these structures "kugeln", after the German for sphere.

View Article and Find Full Text PDF