Small-molecule-induced protein degradation has emerged as a promising pharmacological modality for inactivating disease-relevant protein kinases. DYRK1A and DYRK1B are closely related protein kinases that are involved in pathological processes such as neurodegeneration, cancer development, and adaptive immune homeostasis. Herein, we report the development of the first DYRK1 proteolysis targeting chimeras (PROTACs) that combine a new ATP-competitive DYRK1 inhibitor with ligands for the E3 ubiquitin ligase component cereblon (CRBN) to induce ubiquitination and subsequent proteasomal degradation of DYRK1A and DYRK1B.
View Article and Find Full Text PDFFluorogenic probes for imaging enable visualization and analysis of difficult-to-reach cells and organelles. However, there are limited efficient examples of tuning these fluorescent molecules to higher wavelengths. This is vital since different tissues are sensitive to varying wavelength emissions.
View Article and Find Full Text PDF