Coral reef fishes live in noisy environments that may challenge their capacity for acoustic communication. Butterflyfishes (Family Chaetodontidae) are prominent and ecologically diverse members of coral reef communities worldwide. The discovery of a novel association of anterior swim bladder horns with the lateral line canal system in the genus Chaetodon (the laterophysic connection) revealed a putative adaptation for enhancement of sound reception by the lateral line system and/or the ear.
View Article and Find Full Text PDFFish produce context-specific sounds during social communication, but it is not known how acoustic behaviors have evolved in relation to specializations of the auditory system. Butterflyfishes (family Chaetodontidae) have a well-defined phylogeny and produce pulsed communication sounds during social interactions on coral reefs. Recent work indicates that two sound production mechanisms exist in the bannerfish clade and that other mechanisms are used in the Chaetodon clade, which is distinguished by an auditory specialization, the laterophysic connection (LC).
View Article and Find Full Text PDFButterflyfishes are conspicuous members of coral reefs that communicate with acoustic signals during social interactions with mates and other conspecifics. Members of the genus Chaetodon have a laterophysic connection (LC) - a unique association of anterior swim bladder horns and the cranial lateral line - but the action of the LC system on auditory sensitivity is unexplored. Here, we show in baseline auditory evoked potential threshold experiments that Forcipiger flavissimus (which lacks swim bladder horns and LC) is sensitive to sound tones from 100 Hz up to 1000 Hz, and that thresholds for three species of Chaetodon are 10-15 dB lower, with extended hearing ranges up to 1700-2000 Hz.
View Article and Find Full Text PDFDetailed neuroanatomical studies of model species are necessary to facilitate comparative experiments which test hypotheses relevant to brain evolution and function. Butterflyfishes (Chaetodontidae) boast numerous sympatric species that differ in social behavior, aggression and feeding ecology. However, the ability to test hypotheses relevant to brain function in this family is hindered by the lack of detailed neural descriptions.
View Article and Find Full Text PDFSound production that is mediated by intrinsic or extrinsic swim bladder musculature has evolved multiple times in teleost fishes. Sonic muscles must contract rapidly and synchronously to compress the gas-filled bladder with sufficient velocity to produce sound. Muscle modifications that may promote rapid contraction include small fiber diameter, elaborate sarcoplasmic reticulum (SR), triads at the A-I boundary, and cores of sarcoplasm.
View Article and Find Full Text PDFMany teleost fishes produce sounds for social communication with mechanisms that do not involve swim bladder musculature. Such sounds may reflect physical attributes of the sound-production mechanism, be constrained by body size and therefore control signal reliability during agonistic behaviors. We examined kinematics of the cranium, median fins and caudal peduncle during sound production in two territorial chaetodontid butterflyfish sister species: forcepsfish (Forcipiger flavissimus) and longnose butterflyfish (F.
View Article and Find Full Text PDFIntra and interspecific comparisons of arginine vasotocin (AVT) and its mammalian homolog arginine vasopressin (AVP) demonstrate several relationships between these neuropeptides and aggression/dominance behaviors. Prior studies in coral reef butterflyfishes and other fishes indicate that features of AVT neurons in the gigantocellular preoptic area (gPOA) and axon varicosities within the ventral nucleus of the ventral telencephalon should have a positive relationship with aggressive behavior, whereas AVT-ir neuronal features in the parvocellular preoptic area (pPOA) should have a negative relationship. We measured the offensive aggression of wild caught territorial monogamous multiband butterflyfish, Chaetodon multicinctus, in a simple lab paradigm that controlled for social context and variations in social stimuli.
View Article and Find Full Text PDFThe electrosense of sharks and rays is used to detect weak dipole-like bioelectric fields of prey, mates and predators, and several models propose a use for the detection of streaming ocean currents and swimming-induced fields for geomagnetic orientation. We assessed pore distributions, canal vectors, complementarity and possible evolutionary divergent functions for ampullary clusters in two sharks, the scalloped hammerhead (Sphyrna lewini) and the sandbar shark (Carcharhinus plumbeus), and the brown stingray (Dasyatis lata). Canal projections were determined from measured coordinates of each electrosensory pore and corresponding ampulla relative to the body axis.
View Article and Find Full Text PDFGonadotropin-releasing hormone 1 (GnRH1) neurons control reproductive activity, but GnRH2 and GnRH3 neurons have widespread projections and function as neuromodulators in the vertebrate brain. While these extra-hypothalamic GnRH forms function as olfactory and visual neuromodulators, their potential effect on processing of auditory information is unknown. To test the hypothesis that GnRH modulates the processing of auditory information in the brain, we used immunohistochemistry to determine seasonal variations in these neuropeptide systems, and in vivo single-neuron recordings to identify neuromodulation in the midbrain torus semicircularis of the soniferous damselfish Abudefduf abdominalis.
View Article and Find Full Text PDFAcoustic behaviors are widespread among diverse fish taxa but mechanisms of sound production are known from relatively few species, vary widely and convergent mechanisms are poorly known. We examined the sound production mechanism in the pyramid butterflyfish, Hemitaurichthys polylepis, a member of the socially and ecologically diverse reef fish family Chaetodontidae. In the field, fish produce pulse trains at dusk during social interactions that are probably related to mate attraction and courtship.
View Article and Find Full Text PDFThe neuropeptide arginine vasopressin (AVP) influences many social behaviors through its action in the forebrain of mammals. However, the function of the homologous arginine vasotocin (AVT) in the forebrain of fishes, specifically the telencephalon remains unresolved. We tested whether the density of AVT-immunoreactive (-ir) fiber varicosities, somata size or number of AVT-ir neuronal phenotypes within the forebrain were predictive of social behavior in reproductive males of seven species of butterflyfishes (family Chaetodontidae) in four phylogenetic clades.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
November 2009
The fish auditory system encodes important acoustic stimuli used in social communication, but few studies have examined response properties of central auditory neurons to natural signals. We determined the features and responses of single hindbrain and midbrain auditory neurons to tone bursts and playbacks of conspecific sounds in the soniferous damselfish, Abudefduf abdominalis. Most auditory neurons were either silent or had slow irregular resting discharge rates <20 spikes s(-1).
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
October 2009
Sharks and rays are highly sensitive to chemical stimuli in their natural environment but several hypotheses predict that hammerhead sharks, with their expanded head and enlarged olfactory epithelium, have particularly acute olfactory systems. We used the electro-olfactogram (EOG) technique to compare the relative response of the scalloped hammerhead shark (Sphyrna lewini) olfactory epithelium to 20 proteinogenic amino acids and determine the sensitivity for 6 amino acids. At micromolar concentrations, cysteine evoked the greatest EOG response which was approximately twice as large as that of alanine.
View Article and Find Full Text PDFSounds and hydrodynamic stimuli are important cues detected by the octavolateralis system in fishes. The central organization of auditory, mechanosensory, and vestibular projections is known for only a few phylogenetically diverse fishes, and less is known about projections in derived perciforms that use sounds for acoustic communication. We used neuronal labeling to provide a detailed analysis of octavolateralis endorgan projections in a soniferous perciform that does not have accessory morphological structures to enhance hearing.
View Article and Find Full Text PDFTwelve polymorphic microsatellite loci were developed in the multiband (pebbled) butterflyfish Chaetodon multicinctus. The loci were scored in 45 individuals from Hawaii. There were five to 21 alleles per locus with observed heterozygosity ranging from 0.
View Article and Find Full Text PDFThe nurse shark, Ginglymostoma cirratum, is an obligate suction feeder that preys on benthic invertebrates and fish. Its cranial morphology exhibits a suite of structural and functional modifications that facilitate this mode of prey capture. During suction-feeding, subambient pressure is generated by the ventral expansion of the hyoid apparatus and the floor of its buccopharyngeal cavity.
View Article and Find Full Text PDFSounds provide important signals for inter- and intraspecific communication in fishes, but few studies examine fish acoustic behavior in the context of coevolution of sound production and hearing ability within a species. This study characterizes the acoustic behavior in a reproductive population of the Hawaiian sergeant fish, Abudefduf abdominalis, and compares acoustic features to hearing ability, measured by the auditory evoked potential (AEP) technique. Sergeant fish produce sounds at close distances to the intended receiver (
Comp Biochem Physiol A Mol Integr Physiol
December 2007
Serum corticosterone was previously studied in numerous elasmobranch fishes (sharks, skates and rays), but the role of this steroid, widespread throughout many taxa, has yet to be defined. The goal of this study was to test whether corticosterone varied in response to acute and chronic capture stress, and across the reproductive cycle in the bonnethead shark, Sphyrna tiburo, and Atlantic stingray, Dasyatis sabina. Serum corticosterone in S.
View Article and Find Full Text PDFMorphology typically enhances the fidelity of sensory systems. Sharks, skates, and rays have a well-developed electrosense that presents strikingly unique morphologies. Here, we model the dynamics of the peripheral electrosensory system of the skate, a dorsally flattened batoid, moving near an electric dipole source (e.
View Article and Find Full Text PDFGonadotropin-releasing hormone (GnRH) is widely distributed in the brain of fishes where it may function as a neuromodulator of sensory processing and behavior. Immunocytochemical and neuronal label experiments were conducted on species from four families of coral reef fishes (Chaetodontidae, butterflyfish; Pomacentridae, damselfish; Gobiidae, goby; and Labridae, wrasse) to assess conservation of GnRH targets in the visual processing retina and brain. In all species, GnRH-immunoreactive (-ir) axons from the terminal nerve project principally to the boundary between the inner plexiform (IPL) and inner nuclear (INL) layers of the retina, and are less prominent in the optic nerve, ganglion cell, IPL and INL.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
May 2007
Gonadotropin-releasing hormone (GnRH) and arginine vasotocin (AVT) are critical regulators of reproductive behaviors that exhibit tremendous plasticity, but co-variation in discrete GnRH and AVT neuron populations among sex and season are only partially described in fishes. We used immunocytochemistry to examine sexual and temporal variations in neuron number and size in three GnRH and AVT cell groups in relation to reproductive activities in the halfspotted goby (Asterropteryx semipunctata). GnRH-immunoreactive (-ir) somata occur in the terminal nerve, preoptic area, and midbrain tegmentum, and AVT-ir somata within parvocellular, magnocellular, and gigantocellular regions of the preoptic area.
View Article and Find Full Text PDFButterflyfishes are conspicuous members of coral reefs and well known for their visual displays during social interactions. Members of the genus Chaetodon have a unique peripheral arrangement of the anterior swim bladder that connects with the lateral line (the laterophysic connection) and in many species projects towards the inner ear. This morphology has lead to the proposal that the laterophysic connection and swim bladder system may be a specialized structure for the detection of sound.
View Article and Find Full Text PDFThe mechanotactile hypothesis proposes that ventral non-pored lateral line canals in the stingray function to facilitate localization of prey that contact the skin during benthic feeding. This study used comparative neurophysiological and morphological techniques to test whether ventral non-pored canals encode the velocity of skin movements, and show other adaptations that may enhance detection of tactile stimuli from their prey. Resting discharge rate of lateral line primary afferent neurons was lower among units from ventral than dorsal canal groups.
View Article and Find Full Text PDFJ Physiol Paris
February 2004
The electric sense of elasmobranch fishes (sharks and rays) is an important sensory modality known to mediate the detection of bioelectric stimuli. Although the best known function for the use of the elasmobranch electric sense is prey detection, relatively few studies have investigated other possible biological functions. Here, we review recent studies that demonstrate the elasmobranch electrosensory system functions in a wide number of behavioral contexts including social, reproductive and anti-predator behaviors.
View Article and Find Full Text PDF