Int J Radiat Oncol Biol Phys
August 2024
Purpose: This study investigated how isoform switching affects the cellular response to ionizing radiation (IR), an understudied area despite its relevance to radiation therapy in cancer treatment. We aimed to identify changes in transcript isoform expression post-IR exposure and the proteins mediating these changes, with a focus on their potential to modulate radiosensitivity.
Methods And Materials: Using RNA sequencing, we analyzed the B-cell lines derived from 10 healthy individuals at 3 timepoints, applying the mixture of isoforms algorithm to quantify alternative splicing.
Since genome instability can drive cancer initiation and progression, cells have evolved highly effective and ubiquitous DNA damage response (DDR) programs. However, some cells (for example, in skin) are normally exposed to high levels of DNA-damaging agents. Whether such high-risk cells possess lineage-specific mechanisms that tailor DNA repair to the tissue remains largely unknown.
View Article and Find Full Text PDFSETD2-dependent H3 Lysine-36 trimethylation (H3K36me3) has been recently linked to the deposition of de-novo DNA methylation. SETD2 is frequently mutated in cancer, however, the functional impact of SETD2 loss and depletion on DNA methylation across cancer types and tumorigenesis is currently unknown. Here, we perform a pan-cancer analysis and show that both SETD2 mutation and reduced expression are associated with DNA methylation dysregulation across 21 out of the 24 cancer types tested.
View Article and Find Full Text PDFChromosomal instability (CIN) drives cell-to-cell heterogeneity, and the development of genetic diseases, including cancer. Impaired homologous recombination (HR) has been implicated as a major driver of CIN, however, the underlying mechanism remains unclear. Using a fission yeast model system, we establish a common role for HR genes in suppressing DNA double-strand break (DSB)-induced CIN.
View Article and Find Full Text PDFWe constructed a panel of S. pombe strains expressing DNA polymerase ε variants associated with cancer, specifically POLES297F, POLEV411L, POLEL424V, POLES459F, and used these to compare mutation rates determined by canavanine resistance with other selective methods. Canavanine-resistance mutation rates are broadly similar to those seen with reversion of the ade-485 mutation to adenine prototrophy, but lower than 5-fluoroorotic acid (FOA)-resistance rates (inactivation of ura4+ or ura5+ genes).
View Article and Find Full Text PDFDNA Repair (Amst)
November 2022
Histone Post-Translational Modifications (PTMs) play fundamental roles in mediating DNA-related processes such as transcription, replication and repair. The histone mark H3K36me3 and its associated methyltransferase SETD2 (Set2 in yeast) are archetypical in this regard, performing critical roles in each of these DNA transactions. Here, we present an overview of H3K36me3 regulation and the roles of its writers, readers and erasers in maintaining genome stability through facilitating DNA double-strand break (DSB) repair, checkpoint signalling and replication stress responses.
View Article and Find Full Text PDFPurpose: Outcomes in -mutant metastatic colorectal cancer (mCRC) remain poor and patients have limited therapeutic options. Adavosertib is the first small-molecule inhibitor of WEE1 kinase. We hypothesized that aberrations in DNA replication seen in mCRC with both and mutations would sensitize tumors to WEE1 inhibition.
View Article and Find Full Text PDFSomatic and germline mutations in the proofreading domain of the replicative DNA polymerase ε (POLE-exonuclease domain mutations, POLE-EDMs) are frequently found in colorectal and endometrial cancers and, occasionally, in other tumours. POLE-associated cancers typically display hypermutation, and a unique mutational signature, with a predominance of C > A transversions in the context TCT and C > T transitions in the context TCG. To understand better the contribution of hypermutagenesis to tumour development, we have modelled the most recurrent POLE-EDM (POLE-P286R) in Schizosaccharomyces pombe.
View Article and Find Full Text PDFPreclinical models of cancer have demonstrated enhanced efficacy of cell-cycle checkpoint kinase inhibitors when used in combination with genotoxic agents. This combination therapy is predicted to be exquisitely toxic to cells with a deficient G-S checkpoint or cells with a genetic predisposition leading to intrinsic DNA replication stress, as these cancer cells become fully dependent on the intra-S and G-M checkpoints for DNA repair and cellular survival. Therefore, abolishing remaining cell-cycle checkpoints after damage leads to increased cell death in a tumor cell-specific fashion.
View Article and Find Full Text PDFThe healing of broken chromosomes by de novo telomere addition, while a normal developmental process in some organisms, has the potential to cause extensive loss of heterozygosity, genetic disease, or cell death. However, it is unclear how de novo telomere addition (dnTA) is regulated at DNA double-strand breaks (DSBs). Here, using a non-essential minichromosome in fission yeast, we identify roles for the HR factors Rqh1 helicase, in concert with Rad55, in suppressing dnTA at or near a DSB.
View Article and Find Full Text PDFReplication stress is a common feature of cancer cells, and thus a potentially important therapeutic target. Here, we show that cyclin-dependent kinase (CDK)-induced replication stress, resulting from Wee1 inactivation, is synthetic lethal with mutations disrupting dNTP homeostasis in fission yeast. Wee1 inactivation leads to increased dNTP demand and replication stress through CDK-induced firing of dormant replication origins.
View Article and Find Full Text PDFThe nuclear pore complex (NPC) machinery is emerging as an important determinant in the maintenance of genome integrity and sensitivity to DNA double-strand break (DSB)-inducing agents, such as ionising radiation (IR). In this study, using a high-throughput siRNA screen, we identified the central channel NPC protein Nup54, and concomitantly its molecular partners Nup62 and Nup58, as novel factors implicated in radiosensitivity. Nup54 depletion caused an increase in cell death by mitotic catastrophe after IR, and specifically enhanced both the duration of the G2 arrest and the radiosensitivity of cells that contained replicated DNA at the time of IR exposure.
View Article and Find Full Text PDFChromatin modification through histone H3 lysine 36 methylation by the SETD2 tumor suppressor plays a key role in maintaining genome stability. Here, we describe a role for Set2-dependent H3K36 methylation in facilitating DNA replication and the transcriptional responses to both replication stress and DNA damage through promoting MluI cell-cycle box (MCB) binding factor (MBF)-complex-dependent transcription in fission yeast. Set2 loss leads to reduced MBF-dependent ribonucleotide reductase (RNR) expression, reduced deoxyribonucleoside triphosphate (dNTP) synthesis, altered replication origin firing, and a checkpoint-dependent S-phase delay.
View Article and Find Full Text PDFCold Spring Harb Protoc
April 2018
Pulsed field gel electrophoresis (PFGE) uses alternatively oriented pulsed electrical fields to separate large DNA molecules. Here, we describe PFGE protocols and conditions for separating and visualizing chromosomes between 0.5 and 6 Mb (optimal for analyzing the endogenous fission yeast chromosomes of 5.
View Article and Find Full Text PDFDNA double-strand breaks (DSBs), arising during normal DNA metabolism or following exposure to mutagenic agents such as ionizing radiation can lead to chromosomal rearrangements and genome instability, and are potentially lethal if unrepaired. Therefore, understanding the mechanisms of DSB repair and misrepair, and identifying the factors involved in these processes is of biological as well as medical interest. Here we describe a DSB assay in that can be used to identify and quantify different repair, misrepair, and failed repair events resulting from a site-specific DSB within the context of a nonessential minichromosome, Ch This assay can be used to determine the contribution of most genes or genetic backgrounds to DSB repair and genome stability, and can also provide mechanistic insights into their function.
View Article and Find Full Text PDFThe fission yeast is an excellent model organism to study DNA metabolism, in which the DNA replication and repair mechanisms are evolutionarily conserved. In this introduction we describe a range of methods commonly used to study aspects of DNA metabolism in fission yeast, focusing on approaches used for the analysis of genome stability, DNA replication, and DNA repair. We describe the use of a minichromosome, Ch, for monitoring different aspects of genome stability.
View Article and Find Full Text PDFThe partner and localiser of BRCA2 (PALB2) plays important roles in the maintenance of genome integrity and protection against cancer. Although PALB2 is commonly described as a repair factor recruited to sites of DNA breaks, recent studies provide evidence that PALB2 also associates with unperturbed chromatin. Here, we investigated the previously poorly described role of chromatin-associated PALB2 in undamaged cells.
View Article and Find Full Text PDFDNA double-strand breaks (DSBs) are toxic lesions, which if improperly repaired can result in cell death or genomic instability. DSB repair is usually facilitated by the classical non-homologous end joining (C-NHEJ), or homologous recombination (HR) pathways. However, a mutagenic alternative NHEJ pathway, microhomology-mediated end joining (MMEJ), can also be deployed.
View Article and Find Full Text PDFThe formation of RNA-DNA hybrids, referred to as R-loops, can promote genome instability and cancer development. Yet the mechanisms by which R-loops compromise genome instability are poorly understood. Here, we establish roles for the evolutionarily conserved Nrl1 protein in pre-mRNA splicing regulation, R-loop suppression and in maintaining genome stability.
View Article and Find Full Text PDFHistone H3K36 trimethylation (H3K36me3) is frequently lost in multiple cancer types, identifying it as an important therapeutic target. Here we identify a synthetic lethal interaction in which H3K36me3-deficient cancers are acutely sensitive to WEE1 inhibition. We show that RRM2, a ribonucleotide reductase subunit, is the target of this synthetic lethal interaction.
View Article and Find Full Text PDFUnderstanding the mechanisms of chromosomal double-strand break repair (DSBR) provides insight into genome instability, oncogenesis and genome engineering, including disease gene correction. Research into DSBR exploits rare-cutting endonucleases to cleave exogenous reporter constructs integrated into the genome. Multiple reporter constructs have been developed to detect various DSBR pathways.
View Article and Find Full Text PDFModulating chromatin through histone methylation orchestrates numerous cellular processes. SETD2-dependent trimethylation of histone H3K36 is associated with active transcription. Here, we define a role for H3K36 trimethylation in homologous recombination (HR) repair in human cells.
View Article and Find Full Text PDFDNA double-strand break (DSB) repair is a highly regulated process performed predominantly by non-homologous end joining (NHEJ) or homologous recombination (HR) pathways. How these pathways are coordinated in the context of chromatin is unclear. Here we uncover a role for histone H3K36 modification in regulating DSB repair pathway choice in fission yeast.
View Article and Find Full Text PDF