Membrane proteins must balance the sequence constraints associated with folding and function against the hydrophobicity required for solvation within the bilayer. We recently found the expression and maturation of rhodopsin are limited by the hydrophobicity of its seventh transmembrane domain (TM7), which contains polar residues that are essential for function. On the basis of these observations, we hypothesized that rhodopsin's expression should be less tolerant of mutations in TM7 relative to those within hydrophobic TM domains.
View Article and Find Full Text PDFMembrane proteins are prone to misfolding and degradation within the cell, yet the nature of the conformational defects involved in this process remain poorly understood. The earliest stages of membrane protein folding are mediated by the Sec61 translocon, a molecular machine that facilitates the lateral partitioning of the polypeptide into the membrane. Proper membrane integration is an essential prerequisite for folding of the nascent chain.
View Article and Find Full Text PDFThe conformational equilibria of integral membrane proteins have proven extremely difficult to characterize within native lipid bilayers. To circumvent technical issues, investigations of the structure and stability of α-helical membrane proteins are often carried out in mixed micelle or bicelle solvents that mimic the membrane and facilitate measurements of reversible folding. Under these conditions, the energetics of membrane protein folding are typically proportional to the mole fraction of an anionic detergent in the micelle.
View Article and Find Full Text PDF