In the mouse embryonic forebrain, developmentally distinct oligodendrocyte progenitor cell populations and their progeny, oligodendrocytes, emerge from three distinct regions in a spatiotemporal gradient from ventral to dorsal. However, the functional importance of this oligodendrocyte developmental heterogeneity is unknown. Using a genetic strategy to ablate dorsally derived oligodendrocyte lineage cells (OLCs), we show here that the areas in which dorsally derived OLCs normally reside in the adult central nervous system become populated and myelinated by OLCs of ventral origin.
View Article and Find Full Text PDFThe retrosplenial cortex (RSC) is a hub of diverse afferent and efferent projections thought to be involved in associative learning. RSC shows early pathology in mild cognitive impairment and Alzheimer's disease (AD), which impairs associative learning. To understand and develop therapies for diseases such as AD, animal models are essential.
View Article and Find Full Text PDFIntroduction: About two-thirds of Alzheimer's Disease (AD) patients are women, who exhibit more severe pathology and cognitive decline than men. Whether biological sex causally modulates the relationship between cholinergic signaling and amyloid pathology remains unknown.
Methods: We quantified amyloid beta (Aβ) in male and female App-mutant mice with either decreased or increased cholinergic tone and examined the impact of ovariectomy and estradiol replacement in this relationship.
Significant evidence suggests that misfolded alpha-synuclein (aSyn), a major component of Lewy bodies, propagates in a prion-like manner contributing to disease progression in Parkinson's disease (PD) and other synucleinopathies. In fact, timed inoculation of M83 hemizygous mice with recombinant human aSyn preformed fibrils (PFF) has shown symptomatic deficits after substantial spreading of pathogenic alpha-synuclein, as detected by markers for the phosphorylation of S129 of aSyn. However, whether accumulated toxicity impact human-relevant cognitive and structural neuroanatomical measures is not fully understood.
View Article and Find Full Text PDFNeuropsychopharmacology
January 2024
Open access to rodent cognitive data has lagged behind the rapid generation of large open-access datasets in other areas of neuroscience, such as neuroimaging and genomics. One contributing factor has been the absence of uniform standardization in experiments and data output, an issue that has particularly plagued studies in animal models. Touchscreen-automated cognitive testing of animal models allows standardized outputs that are compatible with open-access sharing.
View Article and Find Full Text PDFThe predominantly pre-synaptic intrinsically disordered protein α-synuclein is prone to misfolding and aggregation in synucleinopathies, such as Parkinson's disease (PD) and Dementia with Lewy bodies (DLB). Molecular chaperones play important roles in protein misfolding diseases and members of the chaperone machinery are often deposited in Lewy bodies. Here, we show that the Hsp90 co-chaperone STI1 co-immunoprecipitated α-synuclein, and co-deposited with Hsp90 and Hsp70 in insoluble protein fractions in two mouse models of α-synuclein misfolding.
View Article and Find Full Text PDFRecent biochemical and behavioural evidence indicates that metabolic hormones not only regulate energy intake and nutrient content, but also modulate plasticity and cognition in the central nervous system. Disruptions in metabolic hormone signalling may provide a link between metabolic syndromes like obesity and diabetes, and cognitive impairment. For example, altered metabolic homeostasis in obesity is a strong determinant of the severity of age-related cognitive decline and neurodegenerative disease.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
July 2022
Clinical investigations have established that vascular-associated medical conditions are significant risk factors for various kinds of dementia. And yet, we are unable to associate certain types of vascular deficiencies with specific cognitive impairments. The reasons for this are many, not the least of which are that most vascular disorders are multi-factorial and the development of vascular dementia in humans is often a multi-year or multi-decade progression.
View Article and Find Full Text PDFVision neuroscience has made great strides in understanding the hierarchical organization of object representations along the ventral visual stream (VVS). How VVS representations capture fine-grained visual similarities between objects that observers subjectively perceive has received limited examination so far. In the current study, we addressed this question by focussing on perceived visual similarities among subordinate exemplars of real-world categories.
View Article and Find Full Text PDFIn the striatum, cholinergic interneurons (CINs) have the ability to release both acetylcholine and glutamate, due to the expression of the vesicular acetylcholine transporter (VAChT) and the vesicular glutamate transporter 3 (VGLUT3). However, the relationship these neurotransmitters have in the regulation of behavior is not fully understood. Here we used reward-based touchscreen tests in mice to assess the individual and combined contributions of acetylcholine/glutamate co-transmission in behavior.
View Article and Find Full Text PDFKeeping similar memories distinct from one another is a critical cognitive process without which we would have difficulty functioning in everyday life. Memories are thought to be kept distinct through the computational mechanism of pattern separation, which reduces overlap between similar input patterns to amplify differences among stored representations. At the behavioral level, impaired pattern separation has been shown to contribute to memory deficits seen in neuropsychiatric and neurodegenerative diseases, including Alzheimer's disease, and in normal aging.
View Article and Find Full Text PDFSequential and cue-directed response learning in rodents have been previously shown to depend on intact striatal signaling. In particular, these behaviors rely on striatal dopamine and acetylcholine release, with an impairment of sequential response learning evident in animal models with alterations in the two systems. Here we provide a protocol for testing sequential response/response chain learning using the rodent touchscreen system.
View Article and Find Full Text PDFPerineuronal nets (PNNs) are chondroitin sulphate proteoglycan-containing structures on the neuronal surface that have been implicated in the control of neuroplasticity and memory. Age-related reduction of chondroitin 6-sulphates (C6S) leads to PNNs becoming more inhibitory. Here, we investigated whether manipulation of the chondroitin sulphate (CS) composition of the PNNs could restore neuroplasticity and alleviate memory deficits in aged mice.
View Article and Find Full Text PDFDespite considerable advances in both in silico and in vitro approaches, in vivo studies that involve animal model systems remain necessary in many research disciplines. Neuroscience is one such area, with studies often requiring access to a complete nervous system capable of dynamically selecting between and then executing a full range of cognitive and behavioral outputs in response to a given stimulus or other manipulation. The involvement of animals in research studies is an issue of active public debate and concern and is therefore carefully regulated.
View Article and Find Full Text PDFTranslating results from pre-clinical animal studies to successful human clinical trials in neurodegenerative and neuropsychiatric disease presents a significant challenge. While this issue is clearly multifaceted, the lack of reproducibility and poor translational validity of many paradigms used to assess cognition in animal models are central contributors to this challenge. Computer-automated cognitive test batteries have the potential to substantially improve translation between pre-clinical studies and clinical trials by increasing both reproducibility and translational validity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2021
Neurogenesis in the adult brain gives rise to functional neurons, which integrate into neuronal circuits and modulate neural plasticity. Sustained neurogenesis throughout life occurs in the subgranular zone (SGZ) of the dentate gyrus in the hippocampus and is hypothesized to be involved in behavioral/cognitive processes such as memory and in diseases. Genomic imprinting is of critical importance to brain development and normal behavior, and exemplifies how epigenetic states regulate genome function and gene dosage.
View Article and Find Full Text PDFEmergent evidence demonstrates that excessive consumption of high fat and high sugar (HFHS) diets has negative consequences on hippocampal and prefrontal cortex (PFC) function. Moreover, the delayed maturation of the PFC including the late development of parvalbumin-expressing (PV) interneurons and perineuronal nets (PNNs) may promote vulnerability to HFHS diet-induced nutritional stress. However, the young brain may have some resistance to diet-induced neuroinflammation.
View Article and Find Full Text PDFPerseveration and apathy are two of the most common behavioural and psychological symptoms of dementia (BPSDs) in amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD). Availability of a validated and behaviourally characterised animal model is crucial for translational research into BPSD in the FTD context. We behaviourally evaluated the male TDP-43 mouse, an ALS-FTD model with a human-equivalent mutation (TDP-43) knocked into the endogenous Tardbp gene.
View Article and Find Full Text PDFMany neurodegenerative and neuropsychiatric diseases and other brain disorders are accompanied by impairments in high-level cognitive functions including memory, attention, motivation, and decision-making. Despite several decades of extensive research, neuroscience is little closer to discovering new treatments. Key impediments include the absence of validated and robust cognitive assessment tools for facilitating translation from animal models to humans.
View Article and Find Full Text PDFThe ability to directly measure acetylcholine (ACh) release is an essential step toward understanding its physiological function. Here we optimized the GRAB (GPCR-activation-based ACh) sensor to achieve substantially improved sensitivity in ACh detection, as well as reduced downstream coupling to intracellular pathways. The improved version of the ACh sensor retains the subsecond response kinetics, physiologically relevant affinity and precise molecular specificity for ACh of its predecessor.
View Article and Find Full Text PDFOpen Science has changed research by making data accessible and shareable, contributing to replicability to accelerate and disseminate knowledge. However, for rodent cognitive studies the availability of tools to share and disseminate data is scarce. Automated touchscreen-based tests enable systematic cognitive assessment with easily standardised outputs that can facilitate data dissemination.
View Article and Find Full Text PDFTransgenic rodents expressing Cre recombinase cell specifically are used for exploring mechanisms regulating behavior, including those mediated by cholinergic signaling. However, it was recently reported that transgenic mice overexpressing a bacterial artificial chromosome containing choline acetyltransferase (ChAT) gene, for synthesizing the neurotransmitter acetylcholine, present with multiple vesicular acetylcholine transporter (VAChT) gene copies, resulting in altered cholinergic tone and accompanying behavioral abnormalities. Since ChAT::Cre+ rats, used increasingly for understanding the biological basis of CNS disorders, utilize the mouse ChAT promotor to control Cre recombinase expression, we assessed for similar genotypical and phenotypical differences in such rats compared to wild-type siblings.
View Article and Find Full Text PDF