Publications by authors named "Timothy Blackwell"

Rationale: Idiopathic pulmonary fibrosis (IPF) is a complex and heterogeneous disease. Given this, we reasoned that differences in genetic profiles may be associated with unique clinical and radiologic features. Computational image analysis, sometimes referred to as radiomics, provides objective, quantitative assessments of radiologic features in subjects with pulmonary fibrosis.

View Article and Find Full Text PDF

Background: The clinical course of idiopathic pulmonary fibrosis (IPF) is highly variable and unpredictable, with multiple genetic variants influencing IPF outcomes. Notably, rare pathogenic variants in telomere-related genes are associated with poorer clinical outcomes in these patients. Here we assessed whether rare qualifying variants (QVs) in monogenic adult-onset pulmonary fibrosis (PF) genes are associated with IPF survival.

View Article and Find Full Text PDF

Relatives of patients with familial pulmonary fibrosis (FPF) are at increased risk to develop FPF. Interstitial lung abnormalities (ILAs) are a radiologic biomarker of subclinical disease, but the implications of very mild abnormalities remain unclear. To quantify the progression risk among FPF relatives with abnormalities below the threshold for ILAs as described by the Fleischner Society and to describe the characteristics of participants with new or progressive ILAs during observation.

View Article and Find Full Text PDF

Exertional dyspnea has been documented in US military personnel after deployment to Iraq and Afghanistan. We studied whether continued exertional dyspnea in this patient population is associated with pulmonary vascular disease (PVD). We performed detailed histomorphometry of pulmonary vasculature in 52 Veterans with biopsy-proven post-deployment respiratory syndrome (PDRS) and then recruited five of these same Veterans with continued exertional dyspnea to undergo a follow-up clinical evaluation, including symptom questionnaire, pulmonary function testing, surface echocardiography, and right heart catheterization (RHC).

View Article and Find Full Text PDF

Recent genetic and genomic advancements have elucidated the complex etiology of idiopathic pulmonary fibrosis (IPF) and other progressive fibrotic interstitial lung diseases (ILDs), emphasizing the contribution of heritable factors. This state-of-the-art review synthesizes evidence on significant genetic contributors to pulmonary fibrosis (PF), including rare genetic variants and common SNPs. The promoter variant is unusual, a common SNP that markedly elevates the risk of early and established PF.

View Article and Find Full Text PDF

Common genetic variants confer substantial risk for chronic lung diseases, including pulmonary fibrosis. Defining the genetic control of gene expression in a cell-type-specific and context-dependent manner is critical for understanding the mechanisms through which genetic variation influences complex traits and disease pathobiology. To this end, we performed single-cell RNA sequencing of lung tissue from 66 individuals with pulmonary fibrosis and 48 unaffected donors.

View Article and Find Full Text PDF

Soldiers deployed to Iraq and Afghanistan have a higher prevalence of respiratory symptoms than nondeployed military personnel and some have been shown to have a constellation of findings on lung biopsy termed post-deployment respiratory syndrome (PDRS). Since many of the subjects in this cohort reported exposure to sulfur dioxide (SO), we developed a model of repetitive exposure to SO in mice that phenocopies many aspects of PDRS, including adaptive immune activation, airway wall remodeling, and pulmonary vascular (PV) disease. Although abnormalities in small airways were not sufficient to alter lung mechanics, PV remodeling resulted in the development of pulmonary hypertension and reduced exercise tolerance in SO-exposed mice.

View Article and Find Full Text PDF

The human lung is structurally complex, with a diversity of specialized epithelial, stromal and immune cells playing specific functional roles in anatomically distinct locations, and large-scale changes in the structure and cellular makeup of this distal lung is a hallmark of pulmonary fibrosis (PF) and other progressive chronic lung diseases. Single-cell transcriptomic studies have revealed numerous disease-emergent/enriched cell types/states in PF lungs, but the spatial contexts wherein these cells contribute to disease pathogenesis has remained uncertain. Using sub-cellular resolution image-based spatial transcriptomics, we analyzed the gene expression of more than 1 million cells from 19 unique lungs.

View Article and Find Full Text PDF

Ligands for the serotonin 2B receptor (5-HT) have shown potential to treat pulmonary arterial hypertension in preclinical models but cannot be used in humans because of predicted off-target neurological effects. The aim of this study was to develop novel systemically restricted compounds targeting 5-HT. Here, we show that mice treated with VU6047534 had decreased RVSP compared with control treatment in both the prevention and intervention studies using Sugen-hypoxia.

View Article and Find Full Text PDF

Multiciliated cell (MCC) loss and/or dysfunction is common in the small airways of patients with chronic obstructive pulmonary disease (COPD), but it is unclear if this contributes to COPD lung pathology. To determine if loss of p73 causes a COPD-like phenotype in mice and explore whether smoking or COPD impact p73 expression. p73 mice were crossed with Shh-Cre mice to generate mice lacking MCCs in the airway epithelium.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers found that YAP/TAZ activity is normally activated in type 2 alveolar cells (AT2) after lung injury, and removing this activity causes significant issues like abnormal cell remodeling and increased inflammation.
  • * The results suggest that maintaining YAP/TAZ activity in AT2 cells is crucial for proper lung healing and preventing fibrosis, highlighting their importance in effective alveolar regeneration.
View Article and Find Full Text PDF

Patients diagnosed with environmental/occupational bronchiolitis obliterans (BO) over the last 2 decades often present with an indolent evolution of respiratory symptoms without a history of high-level, acute exposure to airborne toxins. Exertional dyspnea is the most common symptom and standard clinical and radiographic evaluation can be non-diagnostic. Lung biopsies often reveal pathological abnormalities affecting all distal lung compartments.

View Article and Find Full Text PDF

Soldiers deployed to Iraq and Afghanistan have a higher prevalence of respiratory symptoms than non-deployed military personnel and some have been shown to have a constellation of findings on lung biopsy termed post-deployment respiratory syndrome (PDRS). Since many of the deployers in this cohort reported exposure to sulfur dioxide (SO ), we developed a model of repetitive exposure to SO in mice that phenocopies many aspects of PDRS, including adaptive immune activation, airway wall remodeling, and pulmonary vascular disease (PVD). Although abnormalities in small airways were not sufficient to alter lung mechanics, PVD was associated with the development of pulmonary hypertension and reduced exercise tolerance in SO exposed mice.

View Article and Find Full Text PDF

During alveolar repair, alveolar type 2 (AT2) epithelial cell progenitors rapidly proliferate and differentiate into flat AT1 epithelial cells. Failure of normal alveolar repair mechanisms can lead to loss of alveolar structure (emphysema) or development of fibrosis, depending on the type and severity of injury. To test if β1-containing integrins are required during repair following acute injury, we administered E.

View Article and Find Full Text PDF

To precisely identify mouse resident alveolar macrophages (AMs) and bone marrow (BM)-derived macrophages, we developed a technique to separately label AMs and BM-derived macrophages with a fluorescent lipophilic dye followed by FACS. We showed that this technique overcomes issues in cell identification related to dynamic shifts in cell surface markers that occurs during lung inflammation. We then used this approach to track macrophage subsets at different time points after intratracheal (i.

View Article and Find Full Text PDF

Common genetic variants confer substantial risk for chronic lung diseases, including pulmonary fibrosis (PF). Defining the genetic control of gene expression in a cell-type-specific and context-dependent manner is critical for understanding the mechanisms through which genetic variation influences complex traits and disease pathobiology. To this end, we performed single-cell RNA-sequencing of lung tissue from 67 PF and 49 unaffected donors.

View Article and Find Full Text PDF

-mutant cancers are frequent, metastatic, lethal, and largely undruggable. While interleukin (IL)-1β and nuclear factor (NF)-κB inhibition hold promise against cancer, untargeted treatments are not effective. Here, we show that human -mutant cancers are addicted to IL-1β via inflammatory versican signaling to macrophage inhibitor of NF-κB kinase (IKK) β.

View Article and Find Full Text PDF

Remodeling and loss of distal conducting airways, including preterminal and terminal bronchioles (pre-TBs/TBs), underlie progressive airflow limitation in chronic obstructive pulmonary disease (COPD). The cellular basis of these structural changes remains unknown. To identify biological changes in pre-TBs/TBs in COPD at single-cell resolution and determine their cellular origin.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by limited treatment options and high mortality. A better understanding of the molecular drivers of IPF progression is needed. To identify and validate molecular determinants of IPF survival.

View Article and Find Full Text PDF