Exosomes are tiny vesicles (diameter 30-150 nm) secreted by cells in culture and found in all body fluids. These vesicles, loaded with unique RNA and protein cargos, have many biological functions, of which only a small fraction is currently understood-for example, they participate in cell-to-cell communication and signaling within the human body. The spectrum of current scientific interest in exosomes is wide and ranges from understanding their functions and pathways to using them in diagnostics, as biomarkers, and in the development of therapeutics.
View Article and Find Full Text PDFExosomes are RNA and protein-containing nanovesicles secreted by all cell types and found in abundance in body fluids, including blood, urine and cerebrospinal fluid. These vesicles seem to be a perfect source of biomarkers, as their cargo largely reflects the content of parental cells, and exosomes originating from all organs can be obtained from circulation through minimally invasive or non-invasive means. Here we describe an optimized procedure for exosome isolation and analysis using clinical samples, starting from quick and robust extraction of exosomes with Total exosome isolation reagent, then isolation of RNA followed by qRT-PCR.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
September 2014
Exosomes are tiny vesicles (30-150 nm) constantly secreted by all healthy and abnormal cells, and found in abundance in all body fluids. These vesicles, loaded with unique RNA and protein cargo, have a wide range of biological functions, including cell-to-cell communication and signalling. As such, exosomes hold tremendous potential as biomarkers and could lead to the development of minimally invasive diagnostics and next generation therapies within the next few years.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
November 2010
An efficient synthesis of new cap analogs containing 7-deazaguanosine moiety such as m(7)G[5']ppp[5'](7-deaza)G and m₂(7,3'O)G[5']ppp[5'](7-deaza)G is described. The biological substrate validation of these new cap analogs is evaluated with respect to its capping efficiency and in vitro T7 RNA polymerase transcription using standard cap m⁷G[5']ppp[5']G as a control. The capping efficiency and HPLC data reveal that these new analogs are not the substrate for T7 RNA polymerase or SP6 RNA polymerase.
View Article and Find Full Text PDFThere has been considerable therapeutic interest in the development of human vaccines against cancers and infectious diseases such as HIV and biowarfare agents by using transfected mRNAs for antigenic proteins of interest. The highest expression levels of these proteins are obtained when the transfected mRNA contains 5'-capped ends. In the present study, the locked nucleic acid (LNA)-modified cap analogue 3, m(7(LNA))G[5']ppp[5']G, has been synthesized and its biological properties were examined.
View Article and Find Full Text PDFDesign, synthesis, and biological evaluation of 2'-fluoro-substituted cap analogs, i.e., m(7,2'F)G[5']ppp[5']G and m(7,2'F)G[5']ppp[5']m(7)G are described.
View Article and Find Full Text PDF