Accurate determination of activation energies and reaction enthalpies is essential for understanding the propagation step in free radical polymerization, as it significantly affects polymer chain length and structure. In this study, we compare DLPNO-CCSD(T) to canonical CCSD(T) for 17 radical addition activation energies and 18 reaction enthalpies from Radom and Fischer's test set. Additionally, we compare the computationally efficient composite methods G3(MP2)-RAD and CBS-RAD against CCSD(T)/aug-cc-pVTZ and DLPNO-CCSD(T)/CBS methods.
View Article and Find Full Text PDFReliable thermodynamic and kinetic properties of free radical polymerization reactions are essential for synthesizing both primary polymeric materials and specialty polymers. The computational generation of these data from quantum chemistry requires a time-efficient method capable of capturing the essential physics. One such method, fixed-node diffusion Monte Carlo (FN-DMC) (using single Slater-Jastrow trial wavefunctions), has demonstrated the capability to recover 90%-95% of missing dynamic correlation energy for typical systems.
View Article and Find Full Text PDF