Ontogenic changes in soybean radiation use efficiency (RUE) have been attributed to variation in specific leaf nitrogen (SLN) based only on data collected during seed filling. We evaluated this hypothesis using data on leaf area, absorbed radiation (ARAD), aboveground dry matter (ADM), and plant nitrogen (N) concentration collected during the entire crop season from seven field experiments conducted in a stress-free environment. Each experiment included a full-N treatment that received ample N fertilizer and a zero-N treatment that relied on N fixation and soil N mineralization.
View Article and Find Full Text PDFNon-invasive comparative analysis of the spectral composition of energy absorbed by crop species at leaf and plant levels was carried out using the absorption coefficient retrieved from leaf and plant reflectance as an informative metric. In leaves of three species with contrasting leaf structures and photosynthetic pathways (maize, soybean, and rice), the blue, green, and red fractions of leaf absorption coefficients were 48, 20, and 32%, respectively. The fraction of green light in the total budget of light absorbed at the plant level was higher than at the leaf level approaching the size of the red fraction (24% green vs.
View Article and Find Full Text PDFNitrogen (N) supply can limit the yields of soybean [Glycine max (L.) Merr.] in highly productive environments.
View Article and Find Full Text PDFOne of the main factors affecting vegetation productivity is absorbed light, which is largely governed by chlorophyll. In this paper, we introduce the concept of chlorophyll efficiency, representing the amount of gross primary production per unit of canopy chlorophyll content (Chl) and incident PAR. We analyzed chlorophyll efficiency in two contrasting crops (soybean and maize).
View Article and Find Full Text PDFVegetation productivity metrics such as gross primary production (GPP) at the canopy scale are greatly affected by the efficiency of using absorbed radiation for photosynthesis, or light use efficiency (LUE). Thus, close investigation of the relationships between canopy GPP and photosynthetically active radiation absorbed by vegetation is the basis for quantification of LUE. We used multiyear observations over irrigated and rainfed contrasting C3 (soybean) and C4 (maize) crops having different physiology, leaf structure, and canopy architecture to establish the relationships between canopy GPP and radiation absorbed by vegetation and quantify LUE.
View Article and Find Full Text PDF