Publications by authors named "Timothy A Stiles"

Tissue-mimicking materials and phantoms have an important role in quantitative ultrasound. These materials allow for investigation of new techniques with the ability to design materials with properties that are stable over time and available for repeated measurements to refine techniques and analysis algorithms. This chapter presents an overview of the history of phantoms, methods of creation of materials with a variety of acoustic properties, and methods of measurement of those properties.

View Article and Find Full Text PDF

Excessive liver fat (steatosis) is now the most common cause of chronic liver disease worldwide and is an independent risk factor for cirrhosis and associated complications. Accurate and clinically useful diagnosis, risk stratification, prognostication, and therapy monitoring require accurate and reliable biomarker measurement at acceptable cost. This article describes a joint effort by the American Institute of Ultrasound in Medicine (AIUM) and the RSNA Quantitative Imaging Biomarkers Alliance (QIBA) to develop standards for clinical and technical validation of quantitative biomarkers for liver steatosis.

View Article and Find Full Text PDF

Acoustic output measurements of diagnostic ultrasound scanners are currently performed in water and derated to approximate in situ values. The derating scheme ignores nonlinear propagation of sound waves and has been shown in previous numerical and experimental studies to tend to underestimate relevant pressure and intensity values in tissue mimicking media. This work describes an alternative method, which uses a tissue-mimicking liquid with attenuation coefficient slope of 0.

View Article and Find Full Text PDF

Objective: As are the attenuation coefficient and sound speed, the backscatter coefficient is a fundamental ultrasonic property that has been used to characterize many tissues. Unfortunately, there is currently far less standardization for the ultrasonic backscatter measurement than for the other two, as evidenced by a previous American Institute of Ultrasound in Medicine (AIUM)-sponsored interlaboratory comparison of ultrasonic backscatter, attenuation, and speed measurements (J Ultrasound Med 1999; 18:615-631). To explore reasons for these disparities, the AIUM Endowment for Education and Research recently supported this second interlaboratory comparison, which extends the upper limit of the frequency range from 7 to 9 MHz.

View Article and Find Full Text PDF

Objective: Current determinations of diagnostic ultrasound exposure parameters (eg, peak rarefactional pressure and pulse intensity integral) are intended to correspond to propagation through soft tissue with a propagation speed of 1540 m/s and attenuation of 0.3 dB x cm(-1) x MHz(-1). These current measurements are made in water, which has very little attenuation, and a linear derating factor is applied to approximate 0.

View Article and Find Full Text PDF