Publications by authors named "Timothy A Schulz"

Oxysterol-binding protein (OSBP) and its related proteins (ORPs) constitute a large and evolutionarily conserved family of lipid-binding proteins that target organelle membranes to mediate sterol signaling and/or transport. Here we characterize ORP5, a tail-anchored ORP protein that localizes to the endoplasmic reticulum. Knocking down ORP5 causes cholesterol accumulation in late endosomes and lysosomes, which is reminiscent of the cholesterol trafficking defect in Niemann Pick C (NPC) fibroblasts.

View Article and Find Full Text PDF

Sterols are transferred between cellular membranes by vesicular and poorly understood nonvesicular pathways. Oxysterol-binding protein-related proteins (ORPs) have been implicated in sterol sensing and nonvesicular transport. In this study, we show that yeast ORPs use a novel mechanism that allows regulated sterol transfer between closely apposed membranes, such as organelle contact sites.

View Article and Find Full Text PDF

Sterols such as cholesterol are a significant component of eukaryotic cellular membranes, and their unique physical properties influence a wide variety of membrane processes. It is known that the concentration of sterol within the membrane varies widely between organelles, and that the cell actively maintains this distribution through various transport processes. Vesicular pathways such as secretion or endocytosis may account for this traffic, but increasing evidence highlights the importance of nonvesicular routes as well.

View Article and Find Full Text PDF

The tricalbins are a recently discovered family of Saccharomyces cerevisae proteins containing a predicted N-terminal transmembrane domain and at least three C2 domains. They are thought to be yeast homologues of synaptotagmin, a hypothesis supported by structural similarities and past studies that implicated tricalbins in processes of membrane trafficking and sorting. We expressed and purified constructs consisting of single tricalbin C2 domains, and assayed their ability to bind lipids in response to calcium.

View Article and Find Full Text PDF