Our study investigated the underlying mechanism for the 14q24 renal cell carcinoma (RCC) susceptibility risk locus identified by a genome-wide association study (GWAS). The sentinel single-nucleotide polymorphism (SNP), rs4903064, at 14q24 confers an allele-specific effect on expression of the double PHD fingers 3 (DPF3) of the BAF SWI/SNF complex as assessed by massively parallel reporter assay, confirmatory luciferase assays, and eQTL analyses. Overexpression of DPF3 in renal cell lines increases growth rates and alters chromatin accessibility and gene expression, leading to inhibition of apoptosis and activation of oncogenic pathways.
View Article and Find Full Text PDFBackground: Cancer epidemiology studies require sufficient power to assess spatial relationships between exposures and cancer incidence accurately. However, methods for power calculations of spatial statistics are complicated and underdeveloped, and therefore underutilized by investigators. The spatial relative risk function, a cluster detection technique that detects spatial clusters of point-level data for two groups (e.
View Article and Find Full Text PDFSummary: A concern when conducting genome-wide association studies (GWAS) is the potential for population stratification, i.e. ancestry-based genetic differences between cases and controls, that if not properly accounted for, could lead to biased association results.
View Article and Find Full Text PDFGenomic research involving human genetics and evolutionary biology relies heavily on linkage disequilibrium (LD) to investigate population-specific genetic structure, functionally map regions of disease susceptibility and uncover evolutionary history. Interactive and powerful tools are needed to calculate population-specific LD estimates for integrative genomics research. LDlink is an interactive suite of web-based tools developed to query germline variants in 1000 Genomes Project population groups of interest and generate interactive tables and plots of LD estimates.
View Article and Find Full Text PDFMosaic protein truncating variants (PTVs) in the phosphatase, Mg2+/Mn2+dependent 1D (PPM1D) gene in blood-derived DNA have been associated with increased risk of breast cancer. We analyzed PPM1D PTVs in blood from 3817 breast cancer cases and 3058 controls by deep sequencing of a previously defined region in exon 6 of PPM1D. We identified 50 of 6875 (0.
View Article and Find Full Text PDFCancer treatments composed of immune checkpoint inhibitors and oncogene-targeted drugs might improve cancer management, but there has been little investigation of their combined potential as yet. To estimate the fraction of cancer cases that might benefit from such combination therapy, we conducted an exploratory study of cancer genomic datasets to determine the proportion with somatic mutation profiles amenable to either immunotherapy or targeted therapy. We surveyed 13,349 genomic profiles from public databases for cases with specific mutations targeted by current agents or a burden of exome-wide nonsynonymous mutations (NsM) that exceed a proposed threshold for response to checkpoint inhibitors.
View Article and Find Full Text PDFGenome-wide association studies have identified multiple renal cell carcinoma (RCC) susceptibility loci. Here, we use regional imputation and bioinformatics analysis of the 12p12.1 locus to identify the single-nucleotide polymorphism (SNP) rs7132434 as a potential functional variant.
View Article and Find Full Text PDFImmune checkpoint inhibitor treatment represents a promising approach toward treating cancer and has been shown to be effective in a subset of melanoma, non-small cell lung cancer (NSCLC), and kidney cancers. Recent studies have suggested that the number of nonsynonymous mutations (NsM) can be used to select melanoma and NSCLC patients most likely to benefit from checkpoint inhibitor treatment. It is hypothesized that a higher burden of NsM generates novel epitopes and gene products, detected by the immune system as foreign.
View Article and Find Full Text PDF