Land plant evolution has been marked by numerous genetic innovations, including novel catalytic reactions. Plants produce various carboxyl methyl esters using carboxylic acids as substrates, both of which are involved in diverse biological processes. The biosynthesis of methyl esters is catalyzed by SABATH methyltransferases, and understanding of this family has broadened in recent years.
View Article and Find Full Text PDFWater deficit-inducible synthetic promoters, SD9-2 and SD18-1, designed for use in the dicot poplar, are functional in the monocot crop, rice.
View Article and Find Full Text PDFSynthetic promoters may be designed using short cis-regulatory elements (CREs) and core promoter sequences for specific purposes. We identified novel conserved DNA motifs from the promoter sequences of leaf palisade and vascular cell type-specific expressed genes in water-deficit stressed poplar (Populus tremula × Populus alba), collected through low-input RNA-seq analysis using laser capture microdissection. Hexamerized sequences of four conserved 20-base motifs were inserted into each synthetic promoter construct.
View Article and Find Full Text PDFPlant protoplasts are useful to study both transcriptional regulation and protein subcellular localization in rapid screens. Protoplast transformation can be used in automated platforms for design-build-test cycles of plant promoters, including synthetic promoters. A notable application of protoplasts comes from recent successes in dissecting synthetic promoter activity with poplar mesophyll protoplasts.
View Article and Find Full Text PDFAbiotic stresses can cause significant damage to plants. For sustainable bioenergy crop production, it is critical to generate resistant crops to such stress. Engineering promoters to control the precise expression of stress resistance genes is a very effective way to address the problem.
View Article and Find Full Text PDFPlant-based biosynthesis of fuels, chemicals, and materials promotes environmental sustainability, which includes decreases in greenhouse gas emissions, water pollution, and loss of biodiversity. Advances in plant synthetic biology (synbio) should improve precision and efficacy of genetic engineering for sustainability. Applicable synbio innovations include genome editing, gene circuit design, synthetic promoter development, gene stacking technologies, and the design of environmental sensors.
View Article and Find Full Text PDF