The analysis of 1D anti-diagonal spectra from the projections of 2D double-quantum filtered correlation spectroscopy NMR spectra is presented for the determination of the compositions of liquid mixtures of linear and branched alkanes confined within porous media. These projected spectra do not include the effects of line broadening and therefore retain high-resolution information even in the presence of inhomogeneous magnetic fields as are commonly found in porous media. A partial least-square regression analysis is used to characterize the mixture compositions.
View Article and Find Full Text PDFThe ability to measure and predict molecular diffusion coefficients in multicomponent mixtures is not only of fundamental scientific interest but also of significant relevance in understanding how catalytic processes proceed. In the present work, the direct measurement of the molecular diffusion of H and CO gas-phase species diffusing in -alkane mixtures using pulsed-field gradient (PFG) nuclear magnetic resonance (NMR) methods is reported. The work is of direct relevance to Fischer-Tropsch (FT) catalysis, with the measurements being made of the gas-wax system with the wax in both the bulk liquid state and when confined within a titania catalyst support, at temperatures and pressures typical of low-temperature FT synthesis.
View Article and Find Full Text PDFQuantum devices formed in high-electron-mobility semiconductor heterostructures provide a route through which quantum mechanical effects can be exploited on length scales accessible to lithography and integrated electronics. The electrostatic definition of quantum dots in semiconductor heterostructure devices intrinsically involves the lithographic fabrication of intricate patterns of metallic electrodes. The formation of metal/semiconductor interfaces, growth processes associated with polycrystalline metallic layers, and differential thermal expansion produce elastic distortion in the active areas of quantum devices.
View Article and Find Full Text PDFCoherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance coupling 'on-chip' is to use a quantum mediator, as has been demonstrated for superconducting qubits and trapped ions. For quantum dot arrays, which combine a high degree of tunability with extremely long coherence times, the experimental demonstration of the time evolution of coherent spin-spin coupling via an intermediary system remains an important outstanding goal.
View Article and Find Full Text PDF