Publications by authors named "Timothee Proix"

Epilepsy is defined by the abrupt emergence of harmful seizures, but the nature of these regime shifts remains enigmatic. From the perspective of dynamical systems theory, such critical transitions occur upon inconspicuous perturbations in highly interconnected systems and can be modeled as mathematical bifurcations between alternative regimes. The predictability of critical transitions represents a major challenge, but the theory predicts the appearance of subtle dynamical signatures on the verge of instability.

View Article and Find Full Text PDF

Objective: This study was undertaken to determine the effects of antiseizure medications (ASMs) on multidien (multiday) cycles of interictal epileptiform activity (IEA) and seizures and evaluate their potential clinical significance.

Methods: We retrospectively analyzed up to 10 years of data from 88 of the 256 total adults with pharmacoresistant focal epilepsy who participated in the clinical trials of the RNS System, an intracranial device that keeps records of IEA counts. Following adjunctive ASM trials, we evaluated changes over months in (1) rates of self-reported disabling seizures and (2) multidien IEA cycle strength (spectral power for periodicity between 4 and 40 days).

View Article and Find Full Text PDF

Traditional models of speech perception posit that neural activity encodes speech through a hierarchy of cognitive processes, from low-level representations of acoustic and phonetic features to high-level semantic encoding. Yet it remains unknown how neural representations are transformed across levels of the speech hierarchy. Here, we analyzed unique microelectrode array recordings of neuronal spiking activity from the human left anterior superior temporal gyrus, a brain region at the interface between phonetic and semantic speech processing, during a semantic categorization task and natural speech perception.

View Article and Find Full Text PDF
Article Synopsis
  • Study aims to understand epilepsy seizure patterns by analyzing how interictal epileptiform activity (IEA) builds up over multiple days, which can help predict seizures even if individual timing varies.
  • Researchers utilized a large dataset from clinical trials with 159 participants, employing algorithms like generalized linear models (GLMs) and recurrent neural networks (RNNs) to forecast seizures 24 hours in advance based on IEA detections.
  • Results showed successful seizure forecasting in 79% to 81% of new subjects, demonstrating that this method can be applied broadly across patients, potentially needing less data for individuals starting chronic EEG monitoring.
View Article and Find Full Text PDF

To date, the unpredictability of seizures remains a source of suffering for people with epilepsy, motivating decades of research into methods to forecast seizures. Originally, only few scientists and neurologists ventured into this niche endeavor, which, given the difficulty of the task, soon turned into a long and winding road. Over the past decade, however, our narrow field has seen a major acceleration, with trials of chronic electroencephalographic devices and the subsequent discovery of cyclical patterns in the occurrence of seizures.

View Article and Find Full Text PDF

Reconstructing intended speech from neural activity using brain-computer interfaces holds great promises for people with severe speech production deficits. While decoding overt speech has progressed, decoding imagined speech has met limited success, mainly because the associated neural signals are weak and variable compared to overt speech, hence difficult to decode by learning algorithms. We obtained three electrocorticography datasets from 13 patients, with electrodes implanted for epilepsy evaluation, who performed overt and imagined speech production tasks.

View Article and Find Full Text PDF

Background: People with epilepsy are burdened with the apparent unpredictability of seizures. In the past decade, converging evidence from studies using chronic EEG (cEEG) revealed that epileptic brain activity shows robust cycles, operating over hours (circadian) and days (multidien). We hypothesised that these cycles can be leveraged to estimate future seizure probability, and we tested the feasibility of forecasting seizures days in advance.

View Article and Find Full Text PDF

Recently, it has been proposed that the harmonic patterns emerging from the brain's structural connectivity underlie the resting state networks of the human brain. These harmonic patterns, termed connectome harmonics, are estimated as the Laplace eigenfunctions of the combined gray and white matters connectivity matrices and yield a connectome-specific extension of the well-known Fourier basis. However, it remains unclear how topological properties of the combined connectomes constrain the precise shape of the connectome harmonics and their relationships to the resting state networks.

View Article and Find Full Text PDF

Purpose Of Review: Epilepsy is a dynamical disorder of the brain characterized by sudden, seemingly unpredictable transitions to the ictal state. When and how these transitions occur remain unresolved questions in neurology.

Recent Findings: Modelling work based on dynamical systems theory proposed that a slow control parameter is necessary to explain the transition between interictal and ictal states.

View Article and Find Full Text PDF

Interictal epileptiform discharges (IEDs) are a hallmark of focal epilepsies. Most previous studies have focused on whether IED events increase seizure likelihood or, on the contrary, act as a protective mechanism. Here, we study instead whether IED events themselves can be predicted based on measured ongoing neural activity.

View Article and Find Full Text PDF

Effective representations of recordings of epileptic activity for seizure prediction are high-dimensional, which prevents their visualization. Here we introduce and evaluate methods to find low-dimensional (2D or 3D) descriptors of these high-dimensional representations, which are amenable for visualization. Once low-dimensional descriptors are found, it is useful to identify structure in them.

View Article and Find Full Text PDF

Seizure prediction is feasible, but greater accuracy is needed to make seizure prediction clinically viable across a large group of patients. Recent work crowdsourced state-of-the-art prediction algorithms in a worldwide competition, yielding improvements in seizure prediction performance for patients whose seizures were previously found hard to anticipate. The aim of the current analysis was to explore potential performance improvements using an ensemble of the top competition algorithms.

View Article and Find Full Text PDF

The apparent unpredictability of epileptic seizures has a major impact in the quality of life of people with pharmacologically resistant seizures. Here, we present initial results and a proof-of-concept of how focal seizures can be predicted early in advance based on intracortical signals recorded from small neocortical patches away from identified seizure onset areas. We show that machine learning algorithms can discriminate between interictal and preictal periods based on multiunit activity (i.

View Article and Find Full Text PDF

Accurate seizure prediction will transform epilepsy management by offering warnings to patients or triggering interventions. However, state-of-the-art algorithm design relies on accessing adequate long-term data. Crowd-sourcing ecosystems leverage quality data to enable cost-effective, rapid development of predictive algorithms.

View Article and Find Full Text PDF

Recent studies have shown that seizures can spread and terminate across brain areas via a rich diversity of spatiotemporal patterns. In particular, while the location of the seizure onset area is usually invariant across seizures in an individual patient, the source of traveling (2-3 Hz) spike-and-wave discharges during seizures can either move with the slower propagating ictal wavefront or remain stationary at the seizure onset area. Furthermore, although many focal seizures terminate synchronously across brain areas, some evolve into distinct ictal clusters and terminate asynchronously.

View Article and Find Full Text PDF

See Bernasconi (doi:10.1093/brain/awx229) for a scientific commentary on this article. Drug-resistant localization-related epilepsies are now recognized as network diseases.

View Article and Find Full Text PDF

See Lytton (doi:10.1093/awx018) for a scientific commentary on this article.Neural network oscillations are a fundamental mechanism for cognition, perception and consciousness.

View Article and Find Full Text PDF

Network couplings of oscillatory large-scale systems, such as the brain, have a space-time structure composed of connection strengths and signal transmission delays. We provide a theoretical framework, which allows treating the spatial distribution of time delays with regard to synchronization, by decomposing it into patterns and therefore reducing the stability analysis into the tractable problem of a finite set of delay-coupled differential equations. We analyze delay-structured networks of phase oscillators and we find that, depending on the heterogeneity of the delays, the oscillators group in phase-shifted, anti-phase, steady, and non-stationary clusters, and analytically compute their stability boundaries.

View Article and Find Full Text PDF

Recent efforts to model human brain activity on the scale of the whole brain rest on connectivity estimates of large-scale networks derived from diffusion magnetic resonance imaging (dMRI). This type of connectivity describes white matter fiber tracts. The number of short-range cortico-cortical white-matter connections is, however, underrepresented in such large-scale brain models.

View Article and Find Full Text PDF

The in vivo structure-function relationship is key to understanding brain network reorganization due to pathologies. This relationship is likely to be particularly complex in brain network diseases such as temporal lobe epilepsy, in which disturbed large-scale systems are involved in both transient electrical events and long-lasting functional and structural impairments. Herein, we estimated this relationship by analyzing the correlation between structural connectivity and functional connectivity in terms of analytical network communication parameters.

View Article and Find Full Text PDF

Brain regions generating seizures in patients with refractory partial epilepsy are referred to as the epileptogenic zone (EZ). During a seizure, paroxysmal activity is not restricted to the EZ, but may recruit other brain regions and propagate activity through large brain networks, which comprise brain regions that are not necessarily epileptogenic. The identification of the EZ is crucial for candidates for neurosurgery and requires unambiguous criteria that evaluate the degree of epileptogenicity of brain regions.

View Article and Find Full Text PDF

Seizures are complex phenomena spanning multiple spatial and temporal scales, from ion dynamics to communication between brain regions, from milliseconds (spikes) to days (interseizure intervals). Because of the existence of such multiple scales, the experimental evaluation of the mechanisms underlying the initiation, propagation, and termination of epileptic seizures is a difficult problem. Theoretical models and numerical simulations provide new tools to investigate seizure mechanisms at multiple scales.

View Article and Find Full Text PDF