Mechanistic pathways for the aromatic hydroxylation by [CuII(L1)(TMAO)(O)](-) (L1=hippuric acid, TMAO=trimethylamine N-oxide), derived from the O--N bond homolysis of its [CuII(L1)(TMAO)2] precursor, were explored by using hybrid density functional theory (B3LYP) and highly correlated ab initio methods (QCISD and CCSD). Published experimental studies suggest that the catalytic reaction is triggered by a terminal copper-oxo species, and a detailed study of electronic structures, bonding, and energetics of the corresponding electromers is presented. Two pathways, a stepwise and a concerted reaction, were considered for the hydroxylation process.
View Article and Find Full Text PDF