Publications by authors named "Timo van der Zwan"

Arachidonic acid (AA) is an oomycete-derived microbe-associated molecular pattern (MAMP) capable of eliciting robust defense responses and inducing resistance in plants. Similarly, extract (ANE) from the brown seaweed , a plant biostimulant that contains AA, can also prime plants for defense against pathogen challenges. A previous parallel study comparing the transcriptomes of AA- and ANE-root-treated tomatoes demonstrated significant overlap in transcriptional profiles, a shared induced resistance phenotype, and changes in the accumulation of various defense-related phytohormones.

View Article and Find Full Text PDF

Ascophyllum nodosum extracts (ANE) are well-established plant biostimulants that improve stress tolerance and crop vigour, while also having been shown to stimulate soil microbes. The intersection of these two stimulatory activities, and how they combine to enhance plant health, however, remains poorly understood. In the present study, we aimed to evaluate: (1) the direct effect of ANE on the arbuscular mycorrhizal fungus Rhizophagus irregularis, and (2) whether ANE influences endomycorrhization in plants.

View Article and Find Full Text PDF

The high viscosities/yield stresses of lignocellulose slurries makes their industrial processing a significant challenge. However, little is known regarding the degree to which liquefaction and its enzymatic requirements are specific to a substrate's physicochemical and rheological properties. In the work reported here, the substrate- and rheological regime-specificities of liquefaction of various substrates were assessed using real-time in-rheometer viscometry and offline oscillatory rheometry when hydrolyzed by combinations of cellobiohydrolase ( Cel7A), endoglucanase ( Cel45A), glycoside hydrolase (GH) family 10 xylanase, and GH family 11 xylanase.

View Article and Find Full Text PDF

One of the predominant mechanisms by which lignin restricts effective enzymatic deconstruction of lignocellulosic materials is the unproductive adsorption of enzymes. Although this inhibition can be partially mitigated through hydrophilization of lignin during thermochemical pretreatment, these types of treatments could potentially worsen slurry rheology, consequently making it more difficult to process the material at high substrate concentrations. In the work reported here, laccases were used to specifically modify lignin hydrophilicity within steam-pretreated substrate via in situ phenolic compound grafting.

View Article and Find Full Text PDF

Effective enzyme-mediated viscosity reduction, disaggregation, or "liquefaction," is required to overcome the rheological challenges resulting from the fibrous, hygroscopic nature of lignocellulosic biomass, particularly at the high solids loadings that will be required for an economically viable process. However, the actual mechanisms involved in enzyme-mediated liquefaction, as determined by viscosity or yield stress reduction, have yet to be fully resolved. Particle fragmentation, interparticle interaction, material dilution, and water-retention capacity were compared for their ability to quantify enzyme-mediated liquefaction of model and more realistic pretreated biomass substrates.

View Article and Find Full Text PDF

Within the European Defense Agency (EDA), the Protection of Marine Mammals (PoMM) project, a comprehensive common marine mammal database essential for risk mitigation tools, was established. The database, built on an extensive dataset collection with the focus on areas of operational interest for European navies, consists of annual and seasonal distribution and density maps, random and systematic sightings, an encyclopedia providing knowledge on the characteristics of 126 marine mammal species, data on marine mammal protection areas, and audio information including numerous examples of various vocalizations. Special investigations on marine mammal acoustics were carried out to improve the detection and classification capabilities.

View Article and Find Full Text PDF