Vanilla is widely used in food preparation worldwide for its sensory properties, mainly related to its fragrance, being vanillin the major compound present in the processed vanilla. Vanillin is also known to elicit bitterness as a secondary sensory sensation, but the molecular mechanism of its bitterness has never been reported. Assay buffers of vanillin were tested on all known 25 human bitter taste receptors TAS2Rs.
View Article and Find Full Text PDF(L.) Scop., commonly known as "hedge mustard" or "the singer's plant" is a wild plant common in Eurasian regions.
View Article and Find Full Text PDFBackground & Aims: Hydrophobic bile salts such as glycochenodeoxycholate (GCDC) accumulate in cholestatic liver disease and induce hepatocellular apoptosis, promoting profibrotic signalling. The tissue microenvironment is an integral player in cellular pathophysiology, but it is not routinely incorporated into laboratory studies. Tissue oxygen partial pressure (pO₂) may be an underestimated component of the microenvironment: in the liver, a pO₂ of 30-45 mmHg (approximately 6% O₂) is physiological, because of predominant portal blood supply.
View Article and Find Full Text PDFPurpose: β-Muricholic acid (βMCA) is a trihydroxylated bile acid that constitutes the major bile acid in rat and mouse. βMCA is more hydrophilic than ursodeoxycholic acid and has been evaluated for dissolution of cholesterol gallstones. Since it is unknown if βMCA has beneficial effects on hepatocyte cell death we determined the effect of tauro-βMCA (TβMCA) on apoptosis in vitro.
View Article and Find Full Text PDFApoptosis induced by hydrophobic bile acids is thought to contribute to liver injury during cholestasis. Caspase-6 is an executioner caspase that also appears to have regulatory functions in hematopoetic cell lines. We aimed to elucidate the role of caspase-6 in bile acid-induced apoptosis.
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2008
Delivery of free fatty acids to the liver in nonalcoholic fatty liver disease (NAFLD) may render hepatocytes more vulnerable to glycochenodeoxycholic acid (GCDCA)-induced apoptosis. Fat overloading was induced in HepG2-Ntcp cells and primary rat hepatocytes by incubation with palmitic or oleic acid. Apoptosis was quantified by measuring caspase 3/7 activity and transcription of interleukin (IL) 8 and IL-22 by quantitative real-time PCR.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2008
Ursodeoxycholic acid (UDCA) is used in the therapy of cholestatic liver diseases. Apoptosis induced by toxic bile acids plays an important role in the pathogenesis of liver injury during cholestasis and appears to be mediated by the human transcription factor AP-1. We aimed to study if TUDCA can decrease taurolitholic acid (TLCA)-induced apoptosis by modulating AP-1.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2006
Apoptosis induced by toxic bile acids is thought to contribute to liver injury during cholestasis. The transcription factor AP-1 is involved in the induction of apoptosis depending on stimulus and cell type. It is not known whether the major human toxic bile acid, glycochenodeoxycholic acid (GCDCA), modulates AP-1 in hepatocytes.
View Article and Find Full Text PDF