Publications by authors named "Timo Roine"

The brain is a highly complex physical system made of assemblies of neurons that work together to accomplish elaborate tasks such as motor control, memory and perception. How these parts work together has been studied for decades by neuroscientists using neuroimaging, psychological manipulations, and neurostimulation. Neurostimulation has gained particular interest, given the possibility to perturb the brain and elicit a specific response.

View Article and Find Full Text PDF

Background: Working memory (WM) deficits are among the most prominent cognitive impairments in attention deficit hyperactivity disorder (ADHD). While functional connectivity is a prevailing approach in brain imaging of ADHD, alterations in WM-related functional brain networks and their malleability by cognitive training are not well known. We examined whole-brain functional connectivity differences between adults with and without ADHD during n-back WM tasks and rest at pretest, as well as the effects of WM training on functional and structural brain connectivity in the ADHD group.

View Article and Find Full Text PDF

Background: In 2010, the H1N1 Pandemrix vaccination campaign was followed by a sudden increase in narcolepsy type 1 (NT1). We investigated the brain white matter microstructure in children with onset of NT1 within two years after the Pandemrix vaccination.

Methods: We performed diffusion-weighted magnetic resonance imaging (MRI) on 19 children and adolescents with NT1 and 19 healthy controls.

View Article and Find Full Text PDF

Current knowledge of white matter changes in large-scale brain networks in adult attention-deficit/hyperactivity disorder (ADHD) is scarce. We collected diffusion-weighted magnetic resonance imaging data in 40 adults with ADHD and 36 neurotypical controls and used constrained spherical deconvolution-based tractography to reconstruct whole-brain structural connectivity networks. We used network-based statistic (NBS) and graph theoretical analysis to investigate differences in these networks between the ADHD and control groups, as well as associations between structural connectivity and ADHD symptoms assessed with the Adult ADHD Self-Report Scale or performance in the Conners Continuous Performance Test 2 (CPT-2).

View Article and Find Full Text PDF

Background: It is known that blood levels of neurofilament light (NF-L) and diffusion-weighted magnetic resonance imaging (DW-MRI) are both associated with outcome of patients with mild traumatic brain injury (mTBI). Here, we sought to examine the association between admission levels of plasma NF-L and white matter (WM) integrity in post-acute stage DW-MRI in patients with mTBI.

Methods: Ninety-three patients with mTBI (GCS ≥ 13), blood sample for NF-L within 24 h of admission, and DW-MRI ≥ 90 days post-injury (median = 229) were included.

View Article and Find Full Text PDF

Background: Aneurysmal subarachnoid hemorrhage (aSAH) is a neurological emergency, affecting a younger population than individuals experiencing an ischemic stroke; aSAH is associated with a high risk of mortality and permanent disability. The noble gas xenon has been shown to possess neuroprotective properties as demonstrated in numerous preclinical animal studies. In addition, a recent study demonstrated that xenon could attenuate a white matter injury after out-of-hospital cardiac arrest.

View Article and Find Full Text PDF

Detection of microstructural white matter injury in traumatic brain injury (TBI) requires specialised imaging methods, of which diffusion tensor imaging (DTI) has been extensively studied. Newer fibre alignment estimation methods, such as constrained spherical deconvolution (CSD), are better than DTI in resolving crossing fibres that are ubiquitous in the brain and may improve the ability to detect microstructural injuries. Furthermore, automatic tract segmentation has the potential to improve tractography reliability and accelerate workflow compared to the manual segmentation commonly used.

View Article and Find Full Text PDF

Magnetic resonance (MR) imaging data can be used to develop computer-assisted diagnostic tools for neurodegenerative diseases such as aspartylglucosaminuria (AGU) and other lysosomal storage disorders. MR images contain features that are suitable for the classification and differentiation of affected individuals from healthy persons. Here, comparisons were made between MRI features extracted from different types of magnetic resonance images.

View Article and Find Full Text PDF

Along tract statistics enables white matter characterization using various diffusion MRI metrics. These diffusion models reveal detailed insights into white matter microstructural changes with development, pathology and function. Here, we aim at assessing the clinical utility of diffusion MRI metrics along the corticospinal tract, investigating whether motor glioma patients can be classified with respect to their motor status.

View Article and Find Full Text PDF

Gliomas that infiltrate networks and systems, such as the motor system, often lead to substantial functional impairment in multiple systems. Network-based statistics (NBS) allow to assess local network differences and graph theoretical analyses enable investigation of global and local network properties. Here, we used network measures to characterize glioma-related decreases in structural connectivity by comparing the ipsi- with the contralesional hemispheres of patients and correlated findings with neurological assessment.

View Article and Find Full Text PDF

We investigated the topology of structural brain connectivity networks and its association with outcome after mild traumatic brain injury, a major cause of permanent disability. Eighty-five patients with mild traumatic brain injury underwent magnetic resonance imaging (MRI) twice, about three weeks and eight months after injury, and 30 age-matched orthopedic trauma control subjects were scanned. Outcome was assessed with Extended Glasgow Outcome Scale on average eight months after injury.

View Article and Find Full Text PDF

Tumors infiltrating the motor system lead to significant disability, often caused by corticospinal tract injury. The delineation of the healthy-pathological white matter (WM) interface area, for which diffusion magnetic resonance imaging (dMRI) has shown promising potential, may improve treatment outcome. However, up to 90% of white matter (WM) voxels include multiple fiber populations, which cannot be correctly described with traditional metrics such as fractional anisotropy (FA) or apparent diffusion coefficient (ADC).

View Article and Find Full Text PDF

The structural complexity of the thalamus, due to its mixed composition of gray and white matter, make it challenging to disjoint and quantify each tissue contribution to the thalamic anatomy. This work promotes the use of partial-volume-based over probabilistic-based tissue segmentation approaches to better capture thalamic gray matter differences between patients at different stages of psychosis (early and chronic) and healthy controls. The study was performed on a cohort of 23 patients with schizophrenia, 41 with early psychosis and 69 age and sex-matched healthy subjects.

View Article and Find Full Text PDF

Mild traumatic brain injury (mTBI) can have long-lasting consequences. We investigated white matter (WM) alterations at 6-12 months following mTBI using diffusion tensor imaging (DTI) and assessed if the alterations associate with outcome. Eighty-five patients with mTBI underwent diffusion-weighted magnetic resonance imaging (MRI) on average 8 months post-injury and patients' outcome was assessed at the time of imaging using the Glasgow Outcome Scale-Extended (GOS-E).

View Article and Find Full Text PDF

Background: There is increasing evidence that redox dysregulation, which can lead to oxidative stress and eventually to impairment of oligodendrocytes and parvalbumin interneurons, may underlie brain connectivity alterations in schizophrenia. Accordingly, we previously reported that levels of brain antioxidant glutathione in the medial prefrontal cortex were positively correlated with increased functional connectivity along the cingulum bundle in healthy controls but not in early psychosis patients. In a recent randomized controlled trial, we observed that 6-month supplementation with a glutathione precursor, N-acetyl-cysteine, increased brain glutathione levels and improved symptomatic expression and processing speed.

View Article and Find Full Text PDF

The ventro-intermediate nucleus (Vim), as part of the motor thalamic nuclei, is a commonly used target in functional stereotactic neurosurgery for treatment of drug-resistant tremor. As it cannot be directly visualized on routinely used magnetic resonance imaging (MRI), its clinical targeting is performed using indirect methods. Recent literature suggests that the Vim can be directly visualized on susceptibility-weighted imaging (SWI) acquired at 7 T.

View Article and Find Full Text PDF

Diffusion-weighted magnetic resonance imaging can be used to non-invasively probe the brain microstructure. In addition, recent advances have enabled the identification of complex fiber configurations present in most of the white matter. This has improved the investigation of structural connectivity with tractography methods.

View Article and Find Full Text PDF

We sought to investigate white matter abnormalities in mild traumatic brain injury (mTBI) using diffusion-weighted magnetic resonance imaging (DW-MRI). We applied a global approach based on tract-based spatial statistics skeleton as well as constrained spherical deconvolution tractography. DW-MRI was performed on 102 patients with mTBI within two months post-injury and 30 control subjects.

View Article and Find Full Text PDF

Diffusion Weighted (DW) MRI allows for the non-invasive study of water diffusion inside living tissues. As such, it is useful for the investigation of human brain white matter (WM) connectivity in vivo through fiber tractography (FT) algorithms. Many DW-MRI tailored restoration techniques and FT algorithms have been developed.

View Article and Find Full Text PDF

Background: Recent brain imaging findings suggest that there are widely distributed abnormalities affecting the brain connectivity in individuals with autism spectrum disorder (ASD). Using graph theoretical analysis, it is possible to investigate both global and local properties of brain's wiring diagram, i.e.

View Article and Find Full Text PDF

Background: The aim of this study was to investigate potential differences in neural structure in individuals with Asperger syndrome (AS), high-functioning individuals with autism spectrum disorder (ASD). The main symptoms of AS are severe impairments in social interactions and restricted or repetitive patterns of behaviors, interests or activities.

Methods: Diffusion weighted magnetic resonance imaging data were acquired for 14 adult males with AS and 19 age, sex and IQ-matched controls.

View Article and Find Full Text PDF

Diffusion-weighted (DW) magnetic resonance imaging (MRI) is a noninvasive imaging method, which can be used to investigate neural tracts in the white matter (WM) of the brain. However, the voxel sizes used in DW-MRI are relatively large, making DW-MRI prone to significant partial volume effects (PVE). These PVEs can be caused both by complex (e.

View Article and Find Full Text PDF