Publications by authors named "Timo Murtonen"

In order to meet stringent fuel sulfur limits, ships are increasingly utilizing new fuels or, alternatively, scrubbers to reduce sulfur emissions from the combustion of sulfur-rich heavy fuel oil. The effects of these methods on particle emissions are important, because particle emissions from shipping traffic are known to have both climatic and health effects. In this study, the effects of lower sulfur level liquid fuels, natural gas (NG), and exhaust scrubbers on particulate mass (PM) and nonvolatile particle number (PN greater than 23 nm) emissions were studied by measurements in laboratory tests and in use.

View Article and Find Full Text PDF

This study reports high numbers of exhaust emissions particles during engine motoring. Such particles were observed in the exhaust of two heavy duty vehicles with no diesel particle filter (DPF), driven on speed ramp tests and transient cycles. A significant fraction of these particles was nonvolatile in nature.

View Article and Find Full Text PDF

The effect of intake valve closure (IVC) timing by utilizing Miller cycle and start of injection (SOI) on particulate matter (PM), particle number and nitrogen oxide (NOx) emissions was studied with a hydrotreated vegetable oil (HVO)-fueled nonroad diesel engine. HVO-fueled engine emissions, including aldehyde and polyaromatic hydrocarbon (PAH) emissions, were also compared with those emitted with fossil EN590 diesel fuel. At the engine standard settings, particle number and NOx emissions decreased at all the studied load points (50%, 75%, and 100%) when the fuel was changed from EN590 to HVO.

View Article and Find Full Text PDF

Background: One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic.

View Article and Find Full Text PDF

Hydrotreated vegetable oil (HVO) diesel fuel is a promising biofuel candidate that can complement or substitute traditional diesel fuel in engines. It has been already reported that by changing the fuel from conventional EN590 diesel to HVO decreases exhaust emissions. However, as the fuels have certain chemical and physical differences, it is clear that the full advantage of HVO cannot be realized unless the engine is optimized for the new fuel.

View Article and Find Full Text PDF

We have studied the effect of three different fuels (fossil diesel fuel (EN590); rapeseed methyl ester (RME); and synthetic gas-to-liquid (GTL)) on heavy-duty diesel engine emissions. Our main focus was on nanoparticle emissions of the engine. Our results show that the particle emissions from a modern diesel engine run with EN590, GTL, or RME consisted of two partly nonvolatile modes that were clearly separated in particle size.

View Article and Find Full Text PDF

The effect of lubricants on nanoparticle formation in heavy-duty diesel exhaust with and without a continuously regenerating diesel particulate filter (CRDPF) is studied. A partial flow sampling system with a particle size distribution measurement starting from 3 nm, approximately, is used. Tests are conducted using four different lubricant formulations, a very low sulfur content fuel, and four steady-state driving modes.

View Article and Find Full Text PDF