Publications by authors named "Timo M Takala"

In this study, the probiotic yeast was engineered to secrete the antiviral lectin griffithsin. Twelve genetic tools with the griffithsin gene were cloned into the vector pSF-TEF1-URA3 and introduced into . In the recombinant strains, a 16.

View Article and Find Full Text PDF

The wild-type Lactococcus lactis strain LAC460 produces two bacteriocin-like phage lysins, LysL and LysP. This study aimed to produce and secrete LysL in various heterologous hosts and an in vitro cell-free expression system for further functional studies. Initially, the lysL gene from L.

View Article and Find Full Text PDF

Wild-type Lactococcus lactis strain LAC460 secretes prophage-encoded bacteriocin-like lysin LysL, which kills some Lactococcus strains, but has no lytic effect on the producer. LysL carries two N-terminal enzymatic active domains (EAD), and an unknown C-terminus without homology to known domains. This study aimed to determine whether the C-terminus of LysL carries a cell wall binding domain (CBD) for target specificity of LysL.

View Article and Find Full Text PDF

is a bacterial species commonly associated with meat spoilage. However, some strains exhibit preservative effects due to bacteriocin production. Here, we report the complete genome sequences for two strains, 4010 and AMS1.

View Article and Find Full Text PDF

Introduction: is a genus of lactic acid bacteria used in the dairy industry as a starter. Lactococci have been found to produce altogether more than 40 different bacteriocins, ribosomally synthesized antimicrobial proteins. All known spp.

View Article and Find Full Text PDF

Introduction: The aggregation of the neuronal protein alpha-synuclein (alpha-syn) is a key feature in the pathology of Parkinson's disease (PD). Alpha-syn aggregation has been suggested to be induced in the gut cells by pathogenic gut microbes such as bacteria, which has been shown to be associated with PD. This study aimed to investigate whether bacteria induce alpha-syn aggregation.

View Article and Find Full Text PDF

strains are often detected in spontaneously fermented foods. Because of their abilities to produce lactic acid and functional exopolysaccharides as well as their probiotic traits, spp. improve not only the sensorial properties but also nutritional values of the fermented food products.

View Article and Find Full Text PDF

The overall expectation from an antimicrobial surface has been high considering the need for efficiency in preventing the attachment and growth of pathogenic microbes, durability, safety to both humans and environment as well as cost-effectiveness. To date, antimicrobial surface design has been mostly conducted liberally, without rigorous consideration of establishing robust structure-activity relationships for each design strategy or of the use intended for a specific antimicrobial material. However, the variability among the domain bacteria, which is the most diverse of all, alongside the highly dynamic nature of the bacteria-surface interface have taught us that the likelihood of finding universal antimicrobial surfaces is low.

View Article and Find Full Text PDF

Parkinson's disease (PD) is the most prevalent movement disorder known and predominantly affects the elderly. It is a progressive neurodegenerative disease wherein α-synuclein, a neuronal protein, aggregates to form toxic structures in nerve cells. The cause of Parkinson's disease (PD) remains unknown.

View Article and Find Full Text PDF

Cystatins are proteins, which inhibit cysteine proteases, such as papain. In this study, the 336-bp gene (family II, Hm) of silver carp () was cloned and expressed in BL21 (DE3). Hm encodes the mature peptide of cystatin C (HmCystatin C), with 111 amino acids.

View Article and Find Full Text PDF

For many antibacterial polymer fibres, especially for those with natural functional additives, the antibacterial response might not last over time. Moreover, the mechanical performance of polymeric fibres degrades significantly during the intended operation, such as usage in textile and industrial filter applications. The degradation process and overall ageing can lead to emitted volatile organic compounds (VOCs).

View Article and Find Full Text PDF

GG (LGG) is the most studied probiotic bacterium in the world. It is used as a probiotic supplement in many foods, including various dairy products. However, LGG grows poorly in milk, as it neither metabolizes the main milk carbohydrate lactose nor degrades the major milk protein casein effectively.

View Article and Find Full Text PDF

We report here the genome sequence of subsp. N8, a nisin producer isolated in the 1960s from a dairy product in Finland. The genome consists of a 2.

View Article and Find Full Text PDF

The yeast Saccharomyces boulardii is well known for its probiotic effects such as treating or preventing gastrointestinal diseases. Due to its ability to survive in stomach and intestine, S. boulardii could be applied as a vehicle for producing and delivering bioactive substances of interest to human gut.

View Article and Find Full Text PDF

Listeria ivanovii is one of the two pathogenic species within the genus Listeria, the other being Listeria monocytogenes. In this study, we generated a stable pediocin resistant mutant Liv-r1 of a L. ivanovii strain, compared phenotypic differences between the wild-type and the mutant, localised the pediocin-induced mutations in the chromosome, and analysed the mechanisms behind the bacteriocin resistance.

View Article and Find Full Text PDF

In this paper, we present a new counterselection method for deleting fragments from Lactococcus lactis chromosome. The method uses a non-replicating plasmid vector, which integrates into the chromosome and makes the cell sensitive to bacteriocins. The integration vector carries pUC ori functional in Escherichia coli but not in L.

View Article and Find Full Text PDF

Leuconostoc carnosum 4010 is an antimicrobial strain used as a protective culture in vacuum-packed meats. In this study, we showed that, in addition to antilisterial class IIa bacteriocins leucocin A and C, the strain also produces class IId bacteriocin leucocin B, the antimicrobial activity of which is limited to the genera Leuconostoc and Weissella. Two novel genes, lebBI encoding the leucocin B precursor with a double-glycine-type leader and putative immunity protein LebI, were identified on L.

View Article and Find Full Text PDF

Listeria phage endolysin cell wall-binding domain (CBD) from the Listeria phage A500 was fused with flagellar subunit FliC in Escherichia coli, aiming at binding of E. coli cells to Listeria cells, followed by enhanced killing of Listeria by pediocin production. FliC::CBD chimeric flagella were expressed and detected by Western blot.

View Article and Find Full Text PDF

In this study the growth of genetically modified Lactobacillus casei LAB6, overexpressing proline iminopeptidase PepI and its capacity to increase free proline was investigated during ripening of Edam cheese. The strain successfully survived 12 weeks of ripening period in cheese. The food-grade plasmid pLEB604, carrying the pepI gene, was stable, and PepI enzyme was active in LAB6 cells isolated at different stages of the ripening process.

View Article and Find Full Text PDF

Leuconostoc carnosum 4010 is a protective culture for meat products. It kills the foodborne pathogen Listeria monocytogenes by producing two class IIa (pediocin-like) bacteriocins, leucocin A and leucocin C. The genes for leucocin A production have previously been characterised from Leuconostoc gelidum UAL 187, whereas no genetic studies about leucocin C has been published.

View Article and Find Full Text PDF

A nisin-resistant Lactococcus lactis strain TML01 was isolated from crude milk. A gene with 99% homology to the nisin-resistance gene, nsr, was identified. The food-grade secretion plasmid, pLEB690 (3746 bp), was constructed based on this novel nsr gene enabling primary selection with up to 5 μg nisin/ml.

View Article and Find Full Text PDF
Nisin biosynthesis in vitro.

J Mol Microbiol Biotechnol

November 2007

The lantibiotic nisin is produced by Lactococcus lactis. In the biosynthesis of nisin, the enzyme NisB dehydrates nisin precursor, and the enzyme NisC is needed for lanthionine formation. In this study, the nisA gene encoding the nisin precursor, and the genes nisB and nisC of the lantibiotic modification machinery were expressed together in vitro by the Rapid Translation System (RTS).

View Article and Find Full Text PDF

Nisin-producing Lactococcus lactis protects its own cell membrane against the bacteriocin with the ABC transporter NisFEG, and the immunity lipoprotein NisI. In this study, in order to localize a site for specific nisin interaction in NisI, a C-terminal deletion series of NisI was constructed, and the C-terminally truncated NisI proteins were expressed in L. lactis.

View Article and Find Full Text PDF

Lactococcus lactis cells producing the antibacterial peptide nisin protect their own cytoplasmic membrane by specific immunity proteins, NisI and NisF/E/G. We show here that approximately half of the produced NisI escaped the lipid modification (LF-NisI=lipid-free NisI) and was secreted to the medium, and that LF-NisI had no affinity to cells of L. lactis.

View Article and Find Full Text PDF