Publications by authors named "Timo J Laaksonen"

Impediments to intestinal absorption, such as poor solubility and instability in the variable conditions of the gastrointestinal (GI) tract plague many of the current drugs restricting their oral bioavailability. Particulate drug delivery systems hold great promise in solving these problems, but their effectiveness might be limited by their often rapid transit through the GI tract. Here we describe a bioadhesive oral drug delivery system based on thermally-hydrocarbonized porous silicon (THCPSi) functionalized with a self-assembled amphiphilic protein coating consisting of a class II hydrophobin (HFBII) from Trichoderma reesei.

View Article and Find Full Text PDF

Rapid immune recognition and subsequent elimination from the circulation hampers the use of many nanomaterials as carriers to targeted drug delivery and controlled release in the intravenous route. Here, we report the effect of a functional self-assembled protein coating on the intravenous biodistribution of (18)F-labeled thermally hydrocarbonized porous silicon (THCPSi) nanoparticles in rats. (18)F-Radiolabeling enables the sensitive and easy quantification of nanoparticles in tissues using radiometric methods and allows imaging of the nanoparticle biodistribution with positron emission tomography.

View Article and Find Full Text PDF

Efficient delivery of nanosized drug formulations to the desired body sites is not always reached despite the rapid development of pharmaceutical nanotechnologies. In spite of the undoubted effect of the size for increased bioavailability and controlled drug delivery, submicrometer formulations also require a deeper level of design. The surface properties of the particles determine the stability of the particles, interactions with the body, and targeting potentials of drugs.

View Article and Find Full Text PDF