Purpose: To develop and evaluate the performance of a fully-automated convolutional neural network (CNN)-based algorithm to evaluate hepatobiliary phase (HBP) adequacy of gadoxetate disodium (EOB)-enhanced MRI. Secondarily, we explored the potential of the proposed CNN algorithm to reduce examination length by applying it to EOB-MRI examinations.
Methods: We retrospectively identified EOB-enhanced MRI-HBP series from examinations performed 2011-2018 (internal and external datasets).
Background: Liver alignment between series/exams is challenged by dynamic morphology or variability in patient positioning or motion. Image registration can improve image interpretation and lesion co-localization. We assessed the performance of a convolutional neural network algorithm to register cross-sectional liver imaging series and compared its performance to manual image registration.
View Article and Find Full Text PDF