Publications by authors named "Timo D Muller"

Article Synopsis
  • Metabolic flexibility in skeletal muscle is crucial for healthy glucose and lipid metabolism, and its dysfunction can lead to metabolic diseases.
  • Exercise improves metabolic flexibility and helps identify mechanisms that support metabolic health.
  • The study reveals that pantothenate kinase 4 (PanK4) is vital for muscle metabolism, as its deletion disrupts fatty acid oxidation and elevates harmful acetyl-CoA levels, which lead to glucose intolerance, while increasing PanK4 enhances glucose uptake and lowers acetyl-CoA.
View Article and Find Full Text PDF

From the pioneering moment in 1987 when the insulinotropic effect of glucagon-like peptide 1 (GLP-1) was first demonstrated in humans, to today's pharmaceutical gold rush for GLP-1-based treatments of obesity, the journey of GLP-1 pharmacology has been nothing short of extraordinary. The sequential conceptual developments of long-acting GLP-1 receptor (GLP-1R) mono-agonists, GLP-1R/glucose-dependent insulinotropic polypeptide receptor (GIPR) dual-agonists, and GLP-1R/GIPR/glucagon receptor (GcgR) triple agonists, have led to profound body weight-lowering capacities, with benefits that extend past obesity and towards obesity-associated diseases. The GLP-1R/GIPR dual-agonist tirzepatide has demonstrated a remarkable 23% body weight reduction in individuals with obesity over 72 weeks, eclipsing the average result achieved by certain types of bariatric surgery.

View Article and Find Full Text PDF

The use of incretin agonists for managing metabolic dysfunction-associated steatohepatitis (MASH) is currently experiencing considerable interest. However, whether these compounds have a direct action on MASH is still under debate. This study aims to investigate whether GLP-1R/GIPR agonists act directly in hepatocytes and hepatic stellate cells (HSCs).

View Article and Find Full Text PDF
Article Synopsis
  • Recent advancements in pharmacological treatments for obesity, particularly with GLP-1 agonists and unimolecular peptides, have shifted the perception of obesity management from 'Mission Impossible' to a more feasible approach with promising results.
  • These novel treatments not only aid in weight loss and blood sugar control for those with obesity and type 2 diabetes, but also show potential benefits for other health issues like neurodegenerative diseases and cardiovascular conditions.
  • The review discusses the progress made in incretin-based therapies, their effectiveness and safety, as well as limitations and side effects associated with their use.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigated the CTBP2 gene and its relation to anorexia nervosa (AN) and body mass index (BMI) through mutation analysis, revealing 24 variants in the RIBEYE exon among various groups including patients with AN, obese children, and healthy individuals.
  • Three rare non-synonymous variants were found in AN patients, while several variants were unique to children with severe obesity, indicating potential genetic links to these conditions.
  • Functional studies showed that RIBEYE mRNA is expressed in the mouse hypothalamus and is influenced by leptin treatment, suggesting that the RIBEYE gene may play a role in body weight regulation.
View Article and Find Full Text PDF

Here we intend to shift the "DNA- and information-centric" conception of biological inheritance, with the accompanying exclusion of any non-DNA matter, to a "poly-matter network" framework which, in addition to DNA, considers the action of other cellular membranous constituents. These cellular structures, in particular organelles and plasma membranes, express "landscapes" of specific topologies at their surfaces, which may become altered in response to certain environmental factors. These so-called "membranous environmental landscapes" (MELs), which replicate by self-organization / autopoiesis rather than self-assembly, are transferred from donor to acceptor cells by various - vesicular and non-vesicular - mechanisms and exert novel features in the acceptor cells.

View Article and Find Full Text PDF
Article Synopsis
  • Polycystic ovary syndrome (PCOS) is a complex condition characterized by irregular ovulation, high levels of androgens, and the presence of polycystic ovaries, often leading to metabolic issues like obesity and insulin resistance.
  • Current treatments mainly address symptoms but are often ineffective for the underlying metabolic and reproductive problems.
  • Research shows that a GLP1-based treatment, specifically GLP1/Estrogen (GLP1/E), is more effective in managing PCOS-related metabolic complications and improving ovulation than other multi-agonists and metformin, suggesting a more personalized approach to treatment.
View Article and Find Full Text PDF

Introdroduction: Obesity and its associated metabolic conditions have become a significant global health problem in recent years, with many people living with obesity fulfilling criteria for pharmacological treatment. The development of the glucagon-like peptide-1 receptor agonists for chronic weight management has triggered new interest in the incretins and other hormones as targets for obesity, and investigations into dual and triple co-agonists.

Methods: The objective of this narrative review was to summarize the available data on approved and emerging incretin-based agents for the treatment of obesity.

View Article and Find Full Text PDF

For more than a century, physicians have searched for ways to pharmacologically reduce excess body fat. The tide has finally turned with recent advances in biochemically engineered agonists for the receptor of glucagon-like peptide-1 (GLP-1) and their use in GLP-1-based polyagonists. These polyagonists reduce body weight through complementary pharmacology by incorporating the receptors for glucagon and/or the glucose-dependent insulinotropic polypeptide (GIP).

View Article and Find Full Text PDF

Objectives: We here assessed whether typical pathogens of laboratory mice affect the development of diet-induced obesity and glucose intolerance, and whether colonization affects the efficacy of the GLP-1R agonist liraglutide and of the GLP-1/GIP co-agonist MAR709 to treat obesity and diabetes.

Methods: Male C57BL/6J mice were experimentally infected with Helicobacter hepaticus, Rodentibacter pneumotropicus and Staphylococcus aureus and compared to a group of uninfected specific and opportunistic pathogen free (SOPF) mice. The development of diet-induced obesity and glucose intolerance was monitored over a period of 26 weeks.

View Article and Find Full Text PDF

Thyroid hormone (TH) effects are mediated through TH receptors (TRs), TRα1, TRβ1, and TRβ2. The TRs bind to the DNA and regulate expression of TH target genes (canonical signaling). In addition, they mediate activation of signaling pathways (noncanonical signaling).

View Article and Find Full Text PDF

Unimolecular co-agonists at the GLP-1/GIP receptors have recently achieved remarkable anti-obesogenic feats; yet, in a recent Phase 1 clinical trial, Véniant and colleagues report astounding body-weight loss, and an appreciable safety profile, in participants with obesity using the GLP-1R agonist/GIPR antagonist AMG 133.

View Article and Find Full Text PDF

The discovery of long-acting incretin receptor agonists represents a major stride forward in tackling the dual epidemic of obesity and diabetes. Here we outline the evolution of incretin-based pharmacotherapy, from exendin-4 to the discovery of the multi-incretin hormone receptor agonists that look set to be our next step toward curing diabetes and obesity. We discuss the multiagonists currently in clinical trials and the improvement in efficacy each new generation of these drugs bring.

View Article and Find Full Text PDF

White adipocytes function as major energy reservoirs in humans by storing substantial amounts of triglycerides, and their dysfunction is associated with metabolic disorders; however, the mechanisms underlying cellular specialization during adipogenesis remain unknown. Here, we generate a spatiotemporal proteomic atlas of human adipogenesis, which elucidates cellular remodelling as well as the spatial reorganization of metabolic pathways to optimize cells for lipid accumulation and highlights the coordinated regulation of protein localization and abundance during adipocyte formation. We identify compartment-specific regulation of protein levels and localization changes of metabolic enzymes to reprogramme branched-chain amino acids and one-carbon metabolism to provide building blocks and reduction equivalents.

View Article and Find Full Text PDF

In recent years, significant progress has been made to pharmacologically combat the obesity pandemic, particularly with regard to biochemically tailored drugs that simultaneously target the receptors for glucagon-like peptide-1 (GLP-1) and the glucose-dependent insulinotropic polypeptide (GIP). But while the pharmacological benefits of GLP-1 receptor (GLP-1R) agonism are widely acknowledged, the role of the GIP system in regulating systems metabolism remains controversial. When given in adjunct to GLP-1R agonism, both agonism and antagonism of the GIP receptor (GIPR) improves metabolic outcome in preclinical and clinical studies, and despite persistent concerns about its potential obesogenic nature, there is accumulating evidence indicating that GIP has beneficial metabolic effects via central GIPR agonism.

View Article and Find Full Text PDF

Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are anchored at the outer phospholipid layer of eukaryotic plasma membranes exclusively by a glycolipid. GPI-APs are not only released into extracellular compartments by lipolytic cleavage. In addition, certain GPI-APs with the glycosylphosphatidylinositol anchor including their fatty acids remaining coupled to the carboxy-terminus of their protein components are also detectable in body fluids, in response to certain stimuli, such as oxidative stress, radicals or high-fat diet.

View Article and Find Full Text PDF
Article Synopsis
  • The 9th Cardiovascular Outcome Trial (CVOT) Summit took place online from November 30 to December 1, 2023, focusing on recent outcomes trials involving medications like dapagliflozin, semaglutide, and bempedoic acid aimed at reducing major cardiovascular events and improving metabolic health.
  • A diverse group of healthcare professionals discussed updates in the management of cardiovascular disease in patients with diabetes, heart failure, and chronic kidney disease, alongside the latest treatments for type 1 diabetes and obesity.
  • The Summit emphasized the need for diversity in clinical trial participants and the importance of patient-reported outcomes, advocating for personalized treatment strategies and the integration of continuous glucose monitoring technology in managing diabetes
View Article and Find Full Text PDF

Objective: The glucose-dependent insulinotropic polypeptide (GIP) decreases body weight via central GIP receptor (GIPR) signaling, but the underlying mechanisms remain largely unknown. Here, we assessed whether GIP regulates body weight and glucose control via GIPR signaling in cells that express the leptin receptor (Lepr).

Methods: Hypothalamic, hindbrain, and pancreatic co-expression of Gipr and Lepr was assessed using single cell RNAseq analysis.

View Article and Find Full Text PDF

Insulin resistance is an early complication of diet-induced obesity (DIO), potentially leading to hyperglycaemia and hyperinsulinaemia, accompanied by adaptive β cell hypertrophy and development of type 2 diabetes. Insulin not only signals via the insulin receptor (INSR), but also promotes β cell survival, growth and function via the insulin-like growth factor 1 receptor (IGF1R). We recently identified the insulin inhibitory receptor (inceptor) as the key mediator of IGF1R and INSR desensitization.

View Article and Find Full Text PDF

The prevalence of obesity continues to rise in both adolescents and adults, in parallel obesity is strongly associated with the increased incidence of type 2 diabetes, heart failure, certain types of cancer, and all-cause mortality. In relation to obesity, many pharmacological approaches of the past have tried and failed to combat the rising obesity epidemic, particularly due to insufficient efficacy or unacceptable side effects. However, while the history of antiobesity medication is plagued by failures and disappointments, we have witnessed over the last 10 years substantial progress, particularly in regard to biochemically optimized agonists at the receptor for glucagon-like peptide-1 (GLP-1R) and unimolecular coagonists at the receptors for GLP-1 and the glucose-dependent insulinotropic polypeptide (GIP).

View Article and Find Full Text PDF

The emergence of GIPR:GLP-1R co-agonists has heralded a renaissance of anti-obesity medication. In the recent SURMOUNT 2 trial, Garvey and colleagues set out to examine the weight loss efficacy of the GIPR:GLP-1R co-agonist tirzepatide in patients with obesity and type 2 diabetes, reporting that tirzepatide has unprecedented efficacy in a magnitude historically considered almost unattainable..

View Article and Find Full Text PDF

The development of single-molecule co-agonists for the glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) and glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) is considered a breakthrough in the treatment of obesity and type 2 diabetes. But although GIPR-GLP-1R co-agonism decreases body weight with superior efficacy relative to GLP-1R agonism alone in preclinical and clinical studies, the role of GIP in regulating energy metabolism remains enigmatic. Increasing evidence suggests that long-acting GIPR agonists act in the brain to decrease body weight through the inhibition of food intake; however, the mechanisms and neuronal populations through which GIP affects metabolism remain to be identified.

View Article and Find Full Text PDF

Oxytocin-expressing paraventricular hypothalamic neurons (PVN neurons) integrate afferent signals from the gut, including cholecystokinin (CCK), to adjust whole-body energy homeostasis. However, the molecular underpinnings by which PVN neurons orchestrate gut-to-brain feeding control remain unclear. Here, we show that mice undergoing selective ablation of PVN neurons fail to reduce food intake in response to CCK and develop hyperphagic obesity on a chow diet.

View Article and Find Full Text PDF

Background: Agonism at the receptor for the glucose-dependent insulinotropic polypeptide (GIPR) is a key component of the novel unimolecular GIPR:GLP-1R co-agonists, which are among the most promising drugs in clinical development for the treatment of obesity and type 2 diabetes. The therapeutic effect of chronic GIPR agonism to treat dyslipidemia and thus to reduce the cardiovascular disease risk independently of body weight loss has not been explored yet.

Methods: After 8 weeks on western diet, LDL receptor knockout (LDLR-/-) male mice were treated with daily subcutaneous injections of long-acting acylated GIP analog (acyl-GIP; 10nmol/kg body weight) for 28 days.

View Article and Find Full Text PDF