Publications by authors named "Timo Berkus"

Purpose: Four-dimensional (4D) cone-beam computed tomography (CBCT) of the lung is an effective tool for motion management in radiotherapy but presents a challenge because of slow gantry rotation times. Sorting the individual projections by breathing phase and using an established technique such as Feldkamp-Davis-Kress (FDK) to generate corresponding phase-correlated (PC) three-dimensional (3D) images results in reconstructions (FDK-PC) that often contain severe streaking artifacts due to the sparse angular sampling distributions. These can be reduced by further slowing down the gantry at the expense of incurring unwanted increases in scan times and dose.

View Article and Find Full Text PDF

Purpose: To evaluate several algorithms for 4D cone-beam computed tomography (4D CBCT) with slow rotating devices. 4D CBCT is used to perform phase-correlated (PC) reconstructions of moving objects, such as breathing patients, for example. Such motion phase-dependent reconstructions are especially useful for updating treatment plans in radiation therapy.

View Article and Find Full Text PDF

Purpose: Kilovoltage cone-beam computed tomography (CBCT) is widely used in image-guided radiation therapy for exact patient positioning prior to the treatment. However, producing time series of volumetric images (4D CBCT) of moving anatomical structures remains challenging. The presented work introduces a novel method, combining high temporal resolution inside anatomical regions with strong motion and image quality improvement in regions with little motion.

View Article and Find Full Text PDF

Material-selective imaging using dual energy CT (DECT) relies heavily on well-calibrated material decomposition functions. These require the precise knowledge of the detected x-ray spectra, and even if they are exactly known the reliability of DECT will suffer from scattered radiation. We propose an empirical method to determine the proper decomposition function.

View Article and Find Full Text PDF