The strong link between stomatal frequency and CO2 in woody plants is key for understanding past CO2 dynamics, predicting future change, and evaluating the significant role of vegetation in the hydrological cycle. Experimental validation is required to evaluate the long-term adaptive leaf response of C3 plants to CO2 conditions; however, studies to date have only focused on short-term single-season experiments and may not capture (1) the full ontogeny of leaves to experimental CO2 exposure or (2) the true adjustment of structural stomatal properties to CO2, which we postulate is likely to occur over several growing seasons. We conducted controlled growth chamber experiments at 150 ppmv, 450 ppmv and 800 ppmv CO2 with woody C3 shrub Betula nana (dwarf birch) over two successive annual growing seasons and evaluated the structural stomatal response to atmospheric CO2 conditions.
View Article and Find Full Text PDFUnderstanding relations between climate and pollen production is important for several societal and ecological challenges, importantly pollen forecasting for pollinosis treatment, forensic studies, global change biology, and high-resolution palaeoecological studies of past vegetation and climate fluctuations. For these purposes, we investigate the role of climate variables on annual-scale variations in pollen influx, test the regional consistency of observed patterns, and evaluate the potential to reconstruct high-frequency signals from sediment archives. A 43-year pollen-trap record from the Netherlands is used to investigate relations between annual pollen influx, climate variables (monthly and seasonal temperature and precipitation values), and the North Atlantic Oscillation climate index.
View Article and Find Full Text PDFIn the present study, structural xeromorphic features in modern and subfossil Quercus laurifolia leaves from southern Florida were quantified to reconstruct past precipitation changes in sensitive terrestrial settings. Absolute cell numbers/mm(2), quantified as epidermal cell density (ED) have been analyzed on leaves from herbarium collections as well as the leaves accumulated during the past 125 years in peat deposits. The results reveal a common principal correlation between the measured ED and winter precipitation (November through March, NDJFM: Herbarium r = -0.
View Article and Find Full Text PDFHigh resolution pollen analysis of mid- to late-Holocene peat deposits from southwest Florida reveals a stepwise increase in wetland vegetation that points to an increased precipitation-driven fresh water flow during the past 5,000 years. The tight coupling between winter precipitation patterns in Florida and the strength of the El Niño-Southern Oscillation (ENSO) strongly suggests that the paleo-hydrology record reflects changes in ENSO intensity. A terrestrial subtropical record outside the Indo Pacific Warm Pool both documents ecosystem response to the known onset of modern-day ENSO periodicities, between approximately 7,000 and 5,000 years B.
View Article and Find Full Text PDF