Background: The noradrenergic innervation of the spleen is implicated in the autonomic control of inflammation and has been the target of neurostimulation therapies for inflammatory diseases. However, there is no real-time marker of its successful activation, which hinders the development of anti-inflammatory neurostimulation therapies and mechanistic studies in anti-inflammatory neural circuits.
Methods: In mice, we performed fast-scan cyclic voltammetry (FSCV) in the spleen during intravenous injections of norepinephrine (NE), and during stimulation of the vagus, splanchnic, or splenic nerves.
The emerging field of bioelectronic medicine (BEM) is poised to make a significant impact on the treatment of several neurological and inflammatory disorders. With several BEM therapies being recently approved for clinical use and others in late-phase clinical trials, the 2022 BEM summit was a timely scientific meeting convening a wide range of experts to discuss the latest developments in the field. The BEM Summit was held over two days in New York with more than thirty-five invited speakers and panelists comprised of researchers and experts from both academia and industry.
View Article and Find Full Text PDFVagal fibers travel inside fascicles and form branches to innervate organs and regulate organ functions. Existing vagus nerve stimulation (VNS) therapies activate vagal fibers non-selectively, often resulting in reduced efficacy and side effects from non-targeted organs. The transverse and longitudinal arrangement of fibers inside the vagal trunk with respect to the functions they mediate and organs they innervate is unknown, however it is crucial for selective VNS.
View Article and Find Full Text PDFBackground: Vagal reflexes regulate homeostasis in visceral organs and systems through afferent and efferent neurons and nerve fibers. Small, unmyelinated, C-type afferents comprise over 80% of fibers in the vagus and form the sensory arc of autonomic reflexes of the gut, lungs, heart and vessels and the immune system. Selective bioelectronic activation of C-afferents could be used to mechanistically study and treat diseases of peripheral organs in which vagal reflexes are involved, but it has not been achieved.
View Article and Find Full Text PDFBackground: Neuroinflammation is an important driver of acute and chronic pain states. Therefore, targeting molecular mediators of neuroinflammation may present an opportunity for developing novel pain therapies. In preclinical models of neuroinflammatory pain, calcitonin gene-related peptide (CGRP), substance P and high mobility group box 1 protein (HMGB1) are molecules synthesized and released by sensory neurons which activate inflammation and pain.
View Article and Find Full Text PDFBackground: Osteoarthritis (OA) is a common and debilitating condition characterized by degeneration of hyaline cartilage. Currently, there is no treatment for OA that directly targets degradation of cartilage matrix. Capacitively coupled electric fields (CCEFs) represent a noninvasive and cost-effective treatment modality that can potentially restore articular cartilage homeostasis.
View Article and Find Full Text PDFBackground: Children with frequently relapsing nephrotic syndrome (FRNS) and steroid resistant nephrotic syndrome (SRNS) are exposed to immunosuppressant medications with adverse side effects and variable efficacy. Transcutaneous auricular vagus nerve stimulation (taVNS) modulates the immune system via the inflammatory reflex and has become a therapy of interest for treating immune-mediated illnesses.
Methods: An open-label, pilot study of tavNS for five minutes daily for 26 weeks via a TENS 7000 unit was conducted.
Novel research in the field of bioelectronic medicine requires neuromodulation systems that pair high-performance neurostimulation and bio-signal acquisition hardware with advanced signal processing and control algorithms. Although mice are the most commonly used animal in medical research, the size, weight, and power requirements of such bioelectronic systems either preclude use in mice or impose significant constraints on experimental design. Here, a fully-implantable recording and stimulation neuromodulation system suitable for use in mice is presented, measuring 2.
View Article and Find Full Text PDFFront Neurosci
November 2021
Implanted vagus nerve stimulation (VNS) delivered concurrently with upper limb rehabilitation has been shown to improve arm function after stroke. Transcutaneous auricular VNS (taVNS) offers a non-invasive alternative to implanted VNS and may provide similar therapeutic benefit. There is much discussion about the optimal approach for combining VNS and physical therapy, as such we sought to determine whether taVNS administered during robotic training, specifically delivered during the premotor planning stage for arm extension movements, would confer additional motor improvement in patients with chronic stroke.
View Article and Find Full Text PDFIn this work, we develop a label-free electrochemical immunosensor for the detection of interleukin-6 (IL-6) in human cerebrospinal fluid (CSF) and serum for diagnostic and therapeutic monitoring. The IL-6 immunosensor is fabricated from gold interdigitated electrode arrays (IDEAs) that are modified with IL-6 antibodies for direct antigen recognition and capture. A rigorous surface analysis of the sensor architecture was conducted to ensure high structural fidelity and performance.
View Article and Find Full Text PDFMouse models have been of tremendous benefit to medical science for the better part of a century, yet bioelectronic medicine research using mice has been limited to mostly acute studies because of a lack of tools for chronic stimulation and sensing. A wireless neuromodulation platform small enough for implantation in mice will significantly increase the utility of mouse models in bioelectronic medicine. This perspective examines the necessary functionality of such a system and the technical challenges needed to be overcome for its development.
View Article and Find Full Text PDFVagus nerve stimulation (VNS) is typically delivered at increasing stimulus intensity until a neurological or physiological response is observed ('threshold') for dose calibration, preclinically and therapeutically. Factors affecting VNS thresholds have not been studied systematically. In a rodent model of VNS we measured neural and physiological responses to increasing VNS intensity, determined neurological and physiological thresholds and examined the effect of implant- and anesthesia-related factors on thresholds.
View Article and Find Full Text PDFThere is a broad and growing interest in Bioelectronic Medicine, a dynamic field that continues to generate new approaches in disease treatment. The fourth bioelectronic medicine summit "Technology targeting molecular mechanisms" took place on September 23 and 24, 2020. This virtual meeting was hosted by the Feinstein Institutes for Medical Research, Northwell Health.
View Article and Find Full Text PDFObjectives: Musculoskeletal pain and fatigue are common features in systemic lupus erythematosus (SLE). The cholinergic anti-inflammatory pathway is a physiological mechanism diminishing inflammation, engaged by stimulating the vagus nerve. We evaluated the effects of non-invasive vagus nerve stimulation in patients with SLE and with musculoskeletal pain.
View Article and Find Full Text PDFBackground: Cervical vagus nerve stimulation (VNS) is an emerging bioelectronic treatment for brain, metabolic, cardiovascular and immune disorders. Its desired and off-target effects are mediated by different nerve fiber populations and knowledge of their engagement could guide calibration and monitoring of VNS therapies.
Objective: Stimulus-evoked compound action potentials (eCAPs) directly provide fiber engagement information but are currently not feasible in humans.
Bioelectron Med
August 2020
Conventional neurostimulation systems for preclinical research can be bulky and invasive due to the need for batteries or wired interfaces. Emerging as a new neural interface technique, ultrasound-powered piezoelectric neural stimulators work by converting ultrasound energy to electrical charge for neural stimulation. In addition to the benefits of wireless powering and miniaturization leading to less traumatic surgery, piezoelectric neural stimulators can also exhibit prolonged operational lifetimes for a long-term stable neural interface, and show promise for clinical translation.
View Article and Find Full Text PDFVagus nerve stimulation (VNS) is a bioelectronic therapy for disorders of the brain and peripheral organs, and a tool to study the physiology of autonomic circuits. Selective activation of afferent or efferent vagal fibers can maximize efficacy and minimize off-target effects of VNS. Anodal block (ABL) has been used to achieve directional fiber activation in nerve stimulation.
View Article and Find Full Text PDFBackground: Electrical stimulation of peripheral nerves is a widely used technique to treat a variety of conditions including chronic pain, motor impairment, headaches, and epilepsy. Nerve stimulation to achieve efficacious symptomatic relief depends on the proper selection of electrical stimulation parameters to recruit the appropriate fibers within a nerve. Recently, electrical stimulation of the vagus nerve has shown promise for controlling inflammation and clinical trials have demonstrated efficacy for the treatment of inflammatory disorders.
View Article and Find Full Text PDFThe recent opioid crisis is one of the rising challenges in the history of modern health care. New and effective treatment modalities with less adverse effects to alleviate and manage this modern epidemic are critically needed. The FDA has recently approved two non-invasive electrical nerve stimulators for the adjunct treatment of symptoms of acute opioid withdrawal.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Cervical vagus nerve stimulation (VNS) is a neuromodulation therapy for the treatment of several chronic disorders. The effects of VNS are mediated by activation of nerve fibers of different types. In order to maximize the desired and minimize the undesired effects of VNS, assessing activation of vagal fiber types by VNS is essential.
View Article and Find Full Text PDFCell viability monitoring is an important part of biosafety evaluation for the detection of toxic effects on cells caused by nanomaterials, preferably by label-free, noninvasive, fast, and cost effective methods. These requirements can be met by monitoring cell viability with a capacitance-sensing integrated circuit (IC) microchip. The capacitance provides a measurement of the surface attachment of adherent cells as an indication of their health status.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
December 2016
CMOS chips are increasingly used for direct sensing and interfacing with fluidic and biological systems. While many biosensing systems have successfully combined CMOS chips for readout and signal processing with passive sensing arrays, systems that co-locate sensing with active circuits on a single chip offer significant advantages in size and performance but increase the complexity of multi-domain design and heterogeneous integration. This emerging class of lab-on-CMOS systems also poses distinct and vexing technical challenges that arise from the disparate requirements of biosensors and integrated circuits (ICs).
View Article and Find Full Text PDFCombining integrated circuitry with microfluidics enables lab-on-a-chip (LOC) devices to perform sensing, freeing them from benchtop equipment. However, this integration is challenging with small chips, as is briefly reviewed with reference to key metrics for package comparison. In this paper we present a simple packaging method for including mm-sized, foundry-fabricated dies containing complementary metal oxide semiconductor (CMOS) circuits within LOCs.
View Article and Find Full Text PDF