Four new alkaloids Chaeronepaline-A (1), Chaeronepaline-B (2), Chaeronepaline-C (3), and Chaeronepaline-D (4) were isolated from Corydalis chaerophylla D.C. collected from Nepal and their structures were elucidated by spectroscopic data, 1D, 2D NMR and mass spectrometry.
View Article and Find Full Text PDFBiomass-derived activated carbon materials with hierarchically nanoporous structures containing nitrogen functionalities show excellent electrochemical performances and are explored extensively in energy storage and conversion applications. Here, we report the electrochemical supercapacitance performances of the nitrogen-doped activated carbon materials with an ultrahigh surface area prepared by the potassium hydroxide (KOH) activation of the (Lotus) seed in an aqueous electrolyte solution (1 M sulfuric acid: HSO) in a three-electrode cell. The specific surface areas and pore volumes of Lotus-seed-derived carbon materials carbonized at a different temperatures, from 600 to 1000 °C, are found in the range of 1059.
View Article and Find Full Text PDFOf the available environmentally friendly energy storage devices, supercapacitors are the most promising because of their high energy density, ultra-fast charging-discharging rate, outstanding cycle life, cost-effectiveness, and safety. In this work, nanoporous carbon materials were prepared by applying zinc chloride activation of lotus seed powder from 600 °C to 1000 °C and the electrochemical energy storage (supercapacitance) of the resulting materials in aqueous electrolyte (1M HSO) are reported. Lotus seed-derived activated carbon materials display hierarchically porous structures comprised of micropore and mesopore architectures, and exhibited excellent supercapacitance performances.
View Article and Find Full Text PDFNanoporous activated carbons-derived from agro-waste have been useful as suitable and scalable low-cost electrode materials in supercapacitors applications because of their better surface area and porosity compared to the commercial activated carbons. In this paper, the production of nanoporous carbons by zinc chloride activation of Washnut seed at different temperatures (400-1000 °C) and their electrochemical supercapacitance performances in aqueous electrolyte (1 M HSO) are reported. The prepared nanoporous carbon materials exhibit hierarchical micro- and meso-pore architectures.
View Article and Find Full Text PDF