Background And Aims: Every year, in Europe, acute myeloid leukemia (AML) is diagnosed in thousands of adults. For most subtypes of AML, the backbone of treatment was introduced nearly 40 years ago as a combination of cytosine arabinoside with an anthracycline. This therapy is still the worldwide standard of care.
View Article and Find Full Text PDFThis study presents the design of a gold nanoparticle (AuNPs)-drug system with improved efficiency for the treatment of acute myeloid leukemia. The system is based on four different FLT3 inhibitors, namely midostaurin, sorafenib, lestaurtinib, and quizartinib, which were independently loaded onto gelatin-coated gold nanoparticles. Detailed investigation of the physicochemical properties of the formed complexes lead to the selection of quizartinib-loaded AuNPs for the in vitro evaluation of the biological effects of the formed complex against OCI-AML3 acute myeloid leukemia cells.
View Article and Find Full Text PDFBackground: Releasing drug molecules at the targeted location could increase the clinical outcome of a large number of anti-tumor treatments which require low systemic damage and low side effects. Nano-carriers of drugs show great potential for such task due to their capability of accumulating and releasing their payload specifically, at the tumor site.
Results: FLT3 inhibitor - gold nanoparticle conjugates were fabricated to serve as vehicles for the delivery of anti-tumor drugs.
Incomplete information on toxicological differences of micro- and nanometer-sized particles raised concerns about the effects of the latter on health and environment. Besides chemical composition, size and surface-to-volume ratio of nanoparticles (NPs) can affect toxicity. To investigate size-dependent toxicity differences, we used particles made of dioxide of the neurotoxic heavy metal manganese (Mn), typically found in inhaled metal fumes, in three size ranges (size A, 9.
View Article and Find Full Text PDFAt present, multifunctional noble metal-based nanocomposites are extensively investigated for their potential in performing cellular imaging, diagnostics, and therapy by integration of unique plasmonic properties with the spectroscopic expression and therapeutic activity of appropriate drug. In this work, we report the fabrication of 3-dimensional (3-D) close-packed nanoassemblies of gold nanoparticles by controlling the aggregation of individual nanoparticles in solution and subsequent stabilization of formed aggregates by Pluronic block copolymer (F127) coating. Besides conferring high stability, Pluronic mediates the loading of Methylene Blue (MB) molecules which exhibit interesting spectroscopic and photochemical properties to be employed as both optical label and photosensitizing drug.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
September 2015
In this work, two classes of silver nanoparticles (AgNPs) were biosynthesized with the goal to assess their reliability in vitro as surface-enhanced Raman scattering (SERS) nanotags. Mycosynthesized silver nanoparticles (MAgNPs) and phytosynthesized silver nanoparticles (PAgNPs) were produced through environmentally friendly procedures by reduction of silver nitrate with Fusarium oxysporum cell filtrate and Azadirachta indica extract, respectively. Two cell lines, namely C26 murine colon carcinoma cells as example of cancer cells and human immortalized keratinocyte cells (HaCaT) as representative of healthy cell line, were selected for in vitro investigation.
View Article and Find Full Text PDFThe effectiveness of a therapeutic agent for cancer stands in its ability to reduce and eliminate tumors without harming the healthy tissue nearby. Nanoparticles peripherally conjugated with targeting moieties offer major improvements in therapeutics through site specificity. In this study we demonstrate this approach by targeting the folate receptor of NIH:OVCAR-3 human ovary cancer cell line.
View Article and Find Full Text PDFIn this work we introduce a new class of multifunctional photodynamic agents based on the coupling of photosensitizer molecules with noble metal nanoparticles, which can be efficiently activated under low light intensity. The favourable modification of the photophysical properties of methylene blue (MB) in MB-loaded Pluronic-nanogold hybrids (Au-PF127-MB) increases the probability of singlet oxygen generation, which in turn allows the use of a light emitting diode (LED) irradiation source instead of commonly used, more invasive lasers. In this regard, Au-PF127-MB treated human lung carcinoma cells (HTB 177) were irradiated at different light doses, using a 660 nm LED source, the results indicating a dose dependent therapeutic effect, decreasing the cell viability down to 13%.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
September 2012
The design of polymeric-metal hybrid nanocomposites with multiple functionalities, i.e. from enabling detection and imaging to assisting diagnosis and therapy, is becoming an important research topic in nanomedicine.
View Article and Find Full Text PDFThe synthesis and photophysical properties of two lipophilic quadrupolar chromophores featuring anthracenyl (1) or dibromobenzene (2) were described. These two chromophores combined significant two-photon absorption cross-sections with high fluorescence quantum yield for 1 and improved singlet oxygen generation efficiency for 2, in organic solvents. The use of Pluronic nanoparticles allowed a simple and straightforward introduction of these lipophilic chromophores into biological cell media.
View Article and Find Full Text PDF