trying...
14101MCID_676f08701613efaaf007d82d 30987671 Timea Besenyei[author] Besenyei, Timea[Full Author Name] besenyei, timea[Author] trying2...
trying...
309876712020051320200513
1478-63622112019Apr15Arthritis research & therapyArthritis Res TherGene expression analysis of vascular pathophysiology related to anti-TNF treatment in rheumatoid arthritis.94949410.1186/s13075-019-1862-6Impaired vascular pathophysiology and increased cardiovascular (CV) mortality are associated with rheumatoid arthritis (RA). To date, no genomic analysis of RA- and RA treatment-related vascular pathophysiology has been published. In this pilot study, we performed gene expression profiling in association with vascular pathophysiology in RA patients.Sixteen and 19 biologic-naïve RA patients were included in study 1 and study 2, respectively. In study 1, genetic signatures determined by microarray were related to flow-mediated vasodilation (FMD), pulse-wave velocity (PWV), and common carotid intima-media thickness (IMT) of patients. In study 2, clinical response (cR) vs non-response (cNR) to 1-year etanercept (ETN) or certolizumab pegol (CZP) treatment, as well as "vascular" response (vR) vs non-response (vNR) to biologics, were also associated with genomic profiles. Multiple testing could not be performed due to the relatively small number of patients; therefore, our pilot study may lack power.In study 1, multiple genes were up- or downregulated in patients with abnormal vs normal FMD, IMT, and PWV. In study 2, there were 13 cR and 6 cNR anti-tumor necrosis factor (TNF)-treated patients. In addition, 10, 9, and 8 patients were FMD-20%, IMT-20%, and PWV-20% responders. Again, vascular responder status was associated with changes of the expression of various genes. The highest number of genes showing significant enrichment were involved in positive regulation of immune effector process, regulation of glucose transport, and Golgi vesicle budding.Differential expression of multiple genetic profiles may be associated with vascular pathophysiology associated with RA. Moreover, distinct genetic signatures may also be associated with clinical and vascular responses to 1-year anti-TNF treatment.PóliskaSzilárdSDepartment of Biochemistry and Molecular Biology, University of Debrecen Faculty of Medicine, Debrecen, Hungary.Department of Sports Medicine, University of Debrecen Faculty of Medicine, Debrecen, Hungary.BesenyeiTimeaTDepartment of Rheumatology, University of Debrecen Faculty of Medicine, Nagyerdei str 98, Debrecen, 4032, Hungary.Department of Internal Medicine, University of Debrecen Faculty of Medicine, Debrecen, Hungary.VéghEditEDepartment of Rheumatology, University of Debrecen Faculty of Medicine, Nagyerdei str 98, Debrecen, 4032, Hungary.HamarAttilaADepartment of Rheumatology, University of Debrecen Faculty of Medicine, Nagyerdei str 98, Debrecen, 4032, Hungary.PusztaiAnitaADepartment of Rheumatology, University of Debrecen Faculty of Medicine, Nagyerdei str 98, Debrecen, 4032, Hungary.VáncsaAndreaADepartment of Rheumatology, University of Debrecen Faculty of Medicine, Nagyerdei str 98, Debrecen, 4032, Hungary.BodnárNóraNDepartment of Rheumatology, University of Debrecen Faculty of Medicine, Nagyerdei str 98, Debrecen, 4032, Hungary.SzamosiSzilviaSDepartment of Rheumatology, University of Debrecen Faculty of Medicine, Nagyerdei str 98, Debrecen, 4032, Hungary.CsumitaMáriaMDepartment of Biochemistry and Molecular Biology, University of Debrecen Faculty of Medicine, Debrecen, Hungary.Department of Sports Medicine, University of Debrecen Faculty of Medicine, Debrecen, Hungary.KerekesGyörgyGDepartment of Angiology, University of Debrecen Faculty of Medicine, Debrecen, Hungary.SzabóZoltánZDepartment of Rheumatology, University of Debrecen Faculty of Medicine, Nagyerdei str 98, Debrecen, 4032, Hungary.NagyZoltánZDepartment of Rheumatology, University of Debrecen Faculty of Medicine, Nagyerdei str 98, Debrecen, 4032, Hungary.SzűcsGabriellaGDepartment of Rheumatology, University of Debrecen Faculty of Medicine, Nagyerdei str 98, Debrecen, 4032, Hungary.SzántóSándorSDepartment of Rheumatology, University of Debrecen Faculty of Medicine, Nagyerdei str 98, Debrecen, 4032, Hungary.Department of Sports Medicine, University of Debrecen Faculty of Medicine, Debrecen, Hungary.ZahuczkyGáborGUD Genomed Ltd., Debrecen, Hungary.NagyLászlóLDepartment of Biochemistry and Molecular Biology, University of Debrecen Faculty of Medicine, Debrecen, Hungary.SzekaneczZoltánZDepartment of Rheumatology, University of Debrecen Faculty of Medicine, Nagyerdei str 98, Debrecen, 4032, Hungary. szekanecz.zoltan@med.unideb.hu.engGINOP-2.3.2-15-2016-00050European UnionInternationalTAMOP-4.2.4.A/2-11/1-2012-0001European UnionInternationalGINOP-2.3.2-15-2016-00015European UnionInternationalJournal ArticleResearch Support, Non-U.S. Gov't20190415
EnglandArthritis Res Ther1011544381478-63540Tumor Necrosis Factor-alphaOP401G7OJCEtanerceptUMD07X179ECertolizumab PegolIMAdultArthritis, Rheumatoiddrug therapygeneticsCarotid Intima-Media ThicknessCertolizumab Pegoladverse effectstherapeutic useEtanerceptadverse effectstherapeutic useFemaleGene Expression ProfilingmethodsGene Expression RegulationHumansMaleMiddle AgedPilot ProjectsPulse Wave AnalysismethodsTumor Necrosis Factor-alphaantagonists & inhibitorsmetabolismVasodilationdrug effectsgeneticsAtherosclerosisCertolizumab pegolEtanerceptGene expressionGenetic signaturePredictionResponseRheumatoid arthritisVascular pathologyAUTHORS’ INFORMATION: See above, cover page. ETHICS APPROVAL AND CONSENT TO PARTICIPATE: The Medical Research Council of Hungary gave ethical approval for this study (No. 9732-2/2012/EHR). In addition, the Institutional Review Board of the University of Debrecen Faculty of Medicine also approved the protocol. The study that was in compliance with the Helsinki Declaration. Ethical approval (No. 1046-63/2015) was obtained from the Regional/Institutional Review Board of Miskolc University. All patients signed informed consent. The study was performed according to the Declaration of Helsinki. CONSENT FOR PUBLICATION: No data that could identify single patients are presented therefore this consent is not needed. COMPETING INTERESTS: The authors declare that they have no competing interests. PUBLISHER’S NOTE: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
201810162019382019417602019417602020514602019415epublish30987671PMC646679410.1186/s13075-019-1862-610.1186/s13075-019-1862-6Kerekes G, Soltesz P, Nurmohamed MT, Gonzalez-Gay MA, Turiel M, Vegh E, Shoenfeld Y, McInnes I, Szekanecz Z. Validated methods for assessment of subclinical atherosclerosis in rheumatology. Nat Rev Rheumatol. 2012;8(4):224–234. doi: 10.1038/nrrheum.2012.16.10.1038/nrrheum.2012.1622349611Kerekes G, Szekanecz Z, Der H, Sandor Z, Lakos G, Muszbek L, Csipo I, Sipka S, Seres I, Paragh G, et al. Endothelial dysfunction and atherosclerosis in rheumatoid arthritis: a multiparametric analysis using imaging techniques and laboratory markers of inflammation and autoimmunity. J Rheumatol. 2008;35(3):398–406.18203326PETERS MIKE J.L., van EIJK IZHAR C., SMULDERS YVO M., SERNE ERIK, DIJKMANS BEN A.C., van der HORST-BRUINSMA IRENE E., NURMOHAMED MICHAEL T. Signs of Accelerated Preclinical Atherosclerosis in Patients with Ankylosing Spondylitis. The Journal of Rheumatology. 2009;37(1):161–166. doi: 10.3899/jrheum.090667.10.3899/jrheum.09066719955053Gonzalez-Gay MA, Gonzalez-Juanatey C, Vazquez-Rodriguez TR, Martin J, Llorca J. Endothelial dysfunction, carotid intima-media thickness, and accelerated atherosclerosis in rheumatoid arthritis. Semin Arthritis Rheum. 2008;38(2):67–70. doi: 10.1016/j.semarthrit.2008.02.001.10.1016/j.semarthrit.2008.02.00118395772Bodnar N, Kerekes G, Seres I, Paragh G, Kappelmayer J, Nemethne ZG, Szegedi G, Shoenfeld Y, Sipka S, Soltesz P, et al. Assessment of subclinical vascular disease associated with ankylosing spondylitis. J Rheumatol. 2011;38(4):723–729. doi: 10.3899/jrheum.100668.10.3899/jrheum.10066821239756Gonzalez-Juanatey C, Vazquez-Rodriguez TR, Miranda-Filloy JA, Dierssen T, Vaqueiro I, Blanco R, Martin J, Llorca J, Gonzalez-Gay MA. The high prevalence of subclinical atherosclerosis in patients with ankylosing spondylitis without clinically evident cardiovascular disease. Medicine (Baltimore) 2009;88(6):358–365. doi: 10.1097/MD.0b013e3181c10773.10.1097/MD.0b013e3181c1077319910750Karampetsou MP, Liossis SN, Sfikakis PP. TNF-alpha antagonists beyond approved indications: stories of success and prospects for the future. QJM. 2010;103(12):917–928. doi: 10.1093/qjmed/hcq152.10.1093/qjmed/hcq15220802008Smolen JS, Aletaha D, Koeller M, Weisman MH, Emery P. New therapies for treatment of rheumatoid arthritis. Lancet. 2007;370(9602):1861–1874. doi: 10.1016/S0140-6736(07)60784-3.10.1016/S0140-6736(07)60784-317570481Verweij CL. Pharmacogenetics: anti-TNF therapy in RA--towards personalized medicine? Nat Rev Rheumatol. 2011;7(3):136–138. doi: 10.1038/nrrheum.2011.13.10.1038/nrrheum.2011.1321304506Szekanecz Z, Mesko B, Poliska S, Vancsa A, Szamosi S, Vegh E, Simkovics E, Laki J, Kurko J, Besenyei T, et al. Pharmacogenetics and pharmacogenomics in rheumatology. Immunol Res. 2013;56(2–3):325–333. doi: 10.1007/s12026-013-8405-z.10.1007/s12026-013-8405-zPMC413928223564183Cronstein BN. Pharmacogenetics in the rheumatic diseases, from pret-a-porter to haute couture. Nat Clin Pract Rheumatol. 2006;2(1):2–3. doi: 10.1038/ncprheum0072.10.1038/ncprheum007216932642Davila L, Ranganathan P. Pharmacogenetics: implications for therapy in rheumatic diseases. Nat Rev Rheumatol. 2011;7(9):537–550. doi: 10.1038/nrrheum.2011.117.10.1038/nrrheum.2011.11721826093Mesko B, Poliska S, Szegedi A, Szekanecz Z, Palatka K, Papp M, Nagy L. Peripheral blood gene expression patterns discriminate among chronic inflammatory diseases and healthy controls and identify novel targets. BMC Med Genet. 2010;3:15.PMC287475720444268Mesko B, Poliska S, Nagy L. Gene expression profiles in peripheral blood for the diagnosis of autoimmune diseases. Trends Mol Med. 2011;17(4):223–233. doi: 10.1016/j.molmed.2010.12.004.10.1016/j.molmed.2010.12.00421388884Aziz H, Zaas A, Ginsburg GS. Peripheral blood gene expression profiling for cardiovascular disease assessment. Genomic Med. 2007;1(3–4):105–112. doi: 10.1007/s11568-008-9017-x.10.1007/s11568-008-9017-xPMC226903918923935Mesko B, Poliska S, Vancsa A, Szekanecz Z, Palatka K, Hollo Z, Horvath A, Steiner L, Zahuczky G, Podani J, et al. Peripheral blood derived gene panels predict response to infliximab in rheumatoid arthritis and Crohn’s disease. Genome Med. 2013;5(6):59. doi: 10.1186/gm463.10.1186/gm463PMC406431023809696Mesko B, Poliska S, Szamosi S, Szekanecz Z, Podani J, Varadi C, Guttman A, Nagy L. Peripheral blood gene expression and IgG glycosylation profiles as markers of tocilizumab treatment in rheumatoid arthritis. J Rheumatol. 2012;39(5):916–928. doi: 10.3899/jrheum.110961.10.3899/jrheum.11096122467923Kurko J, Besenyei T, Laki J, Glant TT, Mikecz K, Szekanecz Z. Genetics of rheumatoid arthritis - a comprehensive review. Clin Rev Allergy Immunol. 2013;45(2):170–179. doi: 10.1007/s12016-012-8346-7.10.1007/s12016-012-8346-7PMC365513823288628Lusis AJ. Genetics of atherosclerosis. Trends Genet. 2012;28(6):267–275. doi: 10.1016/j.tig.2012.03.001.10.1016/j.tig.2012.03.001PMC336266422480919Marian AJ. The enigma of genetics etiology of atherosclerosis in the post-GWAS era. Curr Atheroscler Rep. 2012;14(4):295–299. doi: 10.1007/s11883-012-0245-0.10.1007/s11883-012-0245-0PMC338925422437283Farragher TM, Goodson NJ, Naseem H, Silman AJ, Thomson W, Symmons D, Barton A. Association of the HLA-DRB1 gene with premature death, particularly from cardiovascular disease, in patients with rheumatoid arthritis and inflammatory polyarthritis. Arthritis Rheum. 2008;58(2):359–369. doi: 10.1002/art.23149.10.1002/art.23149PMC300103418240242Gonzalez-Gay MA, Gonzalez-Juanatey C, Lopez-Diaz MJ, Pineiro A, Garcia-Porrua C, Miranda-Filloy JA, Ollier WE, Martin J, Llorca J. HLA-DRB1 and persistent chronic inflammation contribute to cardiovascular events and cardiovascular mortality in patients with rheumatoid arthritis. Arthritis Rheum. 2007;57(1):125–132. doi: 10.1002/art.22482.10.1002/art.2248217266100Remuzgo-Martinez S, Genre F, Lopez-Mejias R, Ubilla B, Mijares V, Pina T, Corrales A, Blanco R, Martin J, Llorca J, et al. Expression of osteoprotegerin and its ligands, RANKL and TRAIL, in rheumatoid arthritis. Sci Rep. 2016;6:29713. doi: 10.1038/srep29713.10.1038/srep29713PMC494073427403809Lopez-Mejias R, Castaneda S, Gonzalez-Juanatey C, Corrales A, Ferraz-Amaro I, Genre F, Remuzgo-Martinez S, Rodriguez-Rodriguez L, Blanco R, Llorca J, et al. Cardiovascular risk assessment in patients with rheumatoid arthritis: the relevance of clinical, genetic and serological markers. Autoimmun Rev. 2016;15(11):1013–1030. doi: 10.1016/j.autrev.2016.07.026.10.1016/j.autrev.2016.07.02627490206Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO, 3rd, Birnbaum NS, Burmester GR, Bykerk VP, Cohen MD, et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European league against rheumatism collaborative initiative. Arthritis Rheum. 2010;62(9):2569–2581. doi: 10.1002/art.27584.10.1002/art.2758420872595van Gestel AM, Prevoo ML, van 't Hof MA, van Rijswijk MH, van de Putte LB, van Riel PL. Development and validation of the European League Against Rheumatism response criteria for rheumatoid arthritis. Comparison with the preliminary American College of Rheumatology and the World Health Organization/International League Against Rheumatism Criteria. Arthritis Rheum. 1996;39(1):34–40. doi: 10.1002/art.1780390105.10.1002/art.17803901058546736Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, Deanfield J, Drexler H, Gerhard-Herman M, Herrington D, et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol. 2002;39(2):257–265. doi: 10.1016/S0735-1097(01)01746-6.10.1016/S0735-1097(01)01746-611788217Soltesz P, Der H, Kerekes G, Szodoray P, Szucs G, Danko K, Shoenfeld Y, Szegedi G, Szekanecz Z. A comparative study of arterial stiffness, flow-mediated vasodilation of the brachial artery, and the thickness of the carotid artery intima-media in patients with systemic autoimmune diseases. Clin Rheumatol. 2009;28(6):655–662. doi: 10.1007/s10067-009-1118-y.10.1007/s10067-009-1118-y19224126Kanters SD, Algra A, van Leeuwen MS, Banga JD. Reproducibility of in vivo carotid intima-media thickness measurements: a review. Stroke. 1997;28(3):665–671. doi: 10.1161/01.STR.28.3.665.10.1161/01.STR.28.3.6659056629Baulmann J, Schillings U, Rickert S, Uen S, Dusing R, Illyes M, Cziraki A, Nickering G, Mengden T. A new oscillometric method for assessment of arterial stiffness: comparison with tonometric and piezo-electronic methods. J Hypertens. 2008;26(3):523–528. doi: 10.1097/HJH.0b013e3282f314f7.10.1097/HJH.0b013e3282f314f718300864Timar O, Soltesz P, Szamosi S, Der H, Szanto S, Szekanecz Z, Szucs G. Increased arterial stiffness as the marker of vascular involvement in systemic sclerosis. J Rheumatol. 2008;35(7):1329–1333.18484693Shoenfeld Y, Gerli R, Doria A, Matsuura E, Cerinic MM, Ronda N, Jara LJ, Abu-Shakra M, Meroni PL, Sherer Y. Accelerated atherosclerosis in autoimmune rheumatic diseases. Circulation. 2005;112(21):3337–3347. doi: 10.1161/CIRCULATIONAHA.104.507996.10.1161/CIRCULATIONAHA.104.50799616301360Agca R, Heslinga SC, Rollefstad S, Heslinga M, McInnes IB, Peters MJ, Kvien TK, Dougados M, Radner H, Atzeni F, et al. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann Rheum Dis. 2017;76(1):17–28. doi: 10.1136/annrheumdis-2016-209775.10.1136/annrheumdis-2016-20977527697765de Vries R. Genetics of rheumatoid arthritis: time for a change! Curr Opin Rheumatol. 2011;23(3):227–232. doi: 10.1097/BOR.0b013e3283457524.10.1097/BOR.0b013e328345752421427575Gregersen PK, Silver J, Winchester RJ. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 1987;30(11):1205–1213. doi: 10.1002/art.1780301102.10.1002/art.17803011022446635Schunkert H, Konig IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, Preuss M, Stewart AF, Barbalic M, Gieger C, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 2011;43(4):333–338. doi: 10.1038/ng.784.10.1038/ng.784PMC311926121378990Gonzalez-Gay MA, Gonzalez-Juanatey C, Llorca J, Ollier WE, Martin J. Contribution of HLA-DRB1 shared epitope alleles and chronic inflammation to the increased incidence of cardiovascular disease in rheumatoid arthritis: comment on the article by Farragher et al. Arthritis Rheum. 2008;58(8):2584. doi: 10.1002/art.23637.10.1002/art.2363718668593Garcia-Bermudez M, Lopez-Mejias R, Genre F, Castaneda S, Llorca J, Gonzalez-Juanatey C, Corrales A, Ubilla B, Miranda-Filloy JA, Pina T, et al. Interferon regulatory factor 5 genetic variants are associated with cardiovascular disease in patients with rheumatoid arthritis. Arthritis Res Ther. 2014;16(4):R146. doi: 10.1186/ar4608.10.1186/ar4608PMC422704125011482van Diepen JA, Jansen PA, Ballak DB, Hijmans A, Rutjes FP, Tack CJ, Netea MG, Schalkwijk J, Stienstra R. Genetic and pharmacological inhibition of vanin-1 activity in animal models of type 2 diabetes. Sci Rep. 2016;6:21906. doi: 10.1038/srep21906.10.1038/srep21906PMC477392526932716Hu YW, Wu SG, Zhao JJ, Ma X, Lu JB, Xiu JC, Zhang Y, Huang C, Qiu YR, Sha YH, et al. VNN1 promotes atherosclerosis progression in apoE-/- mice fed a high-fat/high-cholesterol diet. J Lipid Res. 2016;57(8):1398–1411. doi: 10.1194/jlr.M065565.10.1194/jlr.M065565PMC495985627281478Trysberg E, Nylen K, Rosengren LE, Tarkowski A. Neuronal and astrocytic damage in systemic lupus erythematosus patients with central nervous system involvement. Arthritis Rheum. 2003;48(10):2881–2887. doi: 10.1002/art.11279.10.1002/art.1127914558094Gronblad M, Konttinen YT, Korkala O, Liesi P, Hukkanen M, Polak JM. Neuropeptides in synovium of patients with rheumatoid arthritis and osteoarthritis. J Rheumatol. 1988;15(12):1807–1810.3068364Salih AM, Nixon NB, Dawes PT, Mattey DL. Prevalence of antibodies to neurofilament polypeptides in patients with rheumatoid arthritis complicated by peripheral neuropathy. Clin Exp Rheumatol. 1998;16(6):689–694.9844761Kochunov P, Charlesworth J, Winkler A, Hong LE, Nichols TE, Curran JE, Sprooten E, Jahanshad N, Thompson PM, Johnson MP, et al. Transcriptomics of cortical gray matter thickness decline during normal aging. Neuroimage. 2013;82:273–283. doi: 10.1016/j.neuroimage.2013.05.066.10.1016/j.neuroimage.2013.05.066PMC375964923707588Li N, Ma J, Li K, Guo C, Ming L. Different contributions of CDKAL1, KIF21B, and LRRK2/MUC19 polymorphisms to SAPHO syndrome, rheumatoid arthritis, ankylosing spondylitis, and seronegative spondyloarthropathy. Genet Test Mol Biomarkers. 2017;21(2):122–126. doi: 10.1089/gtmb.2016.0112.10.1089/gtmb.2016.011227936930Dooley S, Herlitzka I, Hanselmann R, Ermis A, Henn W, Remberger K, Hopf T, Welter C. Constitutive expression of c-fos and c-jun, overexpression of ets-2, and reduced expression of metastasis suppressor gene nm23-H1 in rheumatoid arthritis. Ann Rheum Dis. 1996;55(5):298–304. doi: 10.1136/ard.55.5.298.10.1136/ard.55.5.298PMC10101668660103Sozen E, Karademir B, Yazgan B, Bozaykut P, Ozer NK. Potential role of proteasome on c-jun related signaling in hypercholesterolemia induced atherosclerosis. Redox Biol. 2014;2:732–738. doi: 10.1016/j.redox.2014.02.007.10.1016/j.redox.2014.02.007PMC408535225009774Han Z, Boyle DL, Aupperle KR, Bennett B, Manning AM, Firestein GS. Jun N-terminal kinase in rheumatoid arthritis. J Pharmacol Exp Ther. 1999;291(1):124–130.10490895Kwok KHM, Cheng KKY, Hoo RLC, Ye D, Xu A, Lam KSL. Adipose-specific inactivation of JNK alleviates atherosclerosis in apoE-deficient mice. Clin Sci (Lond) 2016;130(22):2087–2100. doi: 10.1042/CS20160465.10.1042/CS2016046527512097
236533302013090420220601
1529-01316572013JulArthritis and rheumatismArthritis RheumDifferentially expressed epigenome modifiers, including aurora kinases A and B, in immune cells in rheumatoid arthritis in humans and mouse models.172517351725-3510.1002/art.37986To identify epigenetic factors that are implicated in the pathogenesis of rheumatoid arthritis (RA), and to explore the therapeutic potential of the targeted inhibition of these factors.Polymerase chain reaction (PCR) arrays were used to investigate the expression profile of genes that encode key epigenetic regulator enzymes. Mononuclear cells from RA patients and mice were monitored for gene expression changes, in association with arthritis development in murine models of RA. Selected genes were further characterized by quantitative reverse transcription-PCR, Western blot, and flow cytometry methods. The targeted inhibition of the up-regulated enzymes was studied in arthritic mice.A set of genes with arthritis-specific expression was identified by the PCR arrays. Aurora kinases A and B, both of which were highly expressed in arthritic mice and treatment-naive RA patients, were selected for detailed analysis. Elevated aurora kinase expression was accompanied by increased phosphorylation of histone H3, which promotes proliferation of T lymphocytes. Treatment with VX-680, a pan-aurora kinase inhibitor, promoted B cell apoptosis, provided significant protection against disease onset, and attenuated inflammatory reactions in arthritic mice.Arthritis development is accompanied by changes in expression of a number of epigenome-modifying enzymes. Drug-induced down-regulation of the aurora kinases, among other targets, seems to be sufficient to treat experimental arthritis. Development of new therapeutics that target aurora kinases can potentially improve RA management.Copyright © 2013 by the American College of Rheumatology.GlantTibor TTTRush University Medical Center, Chicago, IL, USA. Tibor_Rauch@rush.eduBesenyeiTimeaTKádárAndrásAKurkóJúliaJTryniszewskaBeataBGálJánosJSoósGyörgyiGSzekaneczZoltánZHoffmannGyulaGBlockJoel AJAKatzRobert SRSMikeczKatalinKRauchTibor ATAengR01 AR059356ARNIAMS NIH HHSUnited StatesR21 AR064948ARNIAMS NIH HHSUnited StatesAR-059356ARNIAMS NIH HHSUnited StatesJournal ArticleResearch Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov't
United StatesArthritis Rheum03706050004-35910Histones0Piperazines0Protein Kinase Inhibitors234335M86KtozasertibEC 2.7.11.1Aurora KinasesEC 2.7.11.1Protein Serine-Threonine KinasesIMAnimalsApoptosisdrug effectsArthritis, Experimentalenzymologygeneticsprevention & controlArthritis, RheumatoidenzymologygeneticsAurora KinasesB-Lymphocytesdrug effectsBlotting, WesternCell Proliferationdrug effectsDisease Models, AnimalEpigenesis, GeneticFemaleFlow CytometryGene Expressiondrug effectsGene Expression ProfilingHistonesmetabolismHumansMaleMiceMice, Inbred BALB CMice, Inbred DBAPhosphorylationgeneticsphysiologyPiperazinespharmacologytherapeutic useProtein Kinase Inhibitorspharmacologytherapeutic useProtein Serine-Threonine Kinasesantagonists & inhibitorsgeneticsmetabolismReverse Transcriptase Polymerase Chain ReactionT-Lymphocytesdrug effectsUp-RegulationDISCLOSURE. The authors declare no competing financial interests.
201262520134162013596020135960201395602014717ppublish23653330NIHMS557246PMC410231910.1002/art.37986Turesson C, O’Fallon WM, Crowson CS, Gabriel SE, Matteson EL. Extra-articular disease manifestations in rheumatoid arthritis: incidence trends and risk factors over 46 years. Ann Rheum Dis. 2003;62:722–7.PMC175462612860726Ballestar E. Epigenetic alterations in autoimmune rheumatic diseases. Nat Rev Rheumatol. 2011;7:263–71.21343899Jacobi AM, Dorner T. Current aspects of anti-CD20 therapy in rheumatoid arthritis. Curr Opin Pharmacol. 2010;10:316–21.20189875Chi P, Allis CD, Wang GG. Covalent histone modifications--miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer. 2010;10:457–69.PMC326267820574448Carmena M, Ruchaud S, Earnshaw WC. Making the Auroras glow: regulation of Aurora A and B kinase function by interacting proteins. Curr Opin Cell Biol. 2009;21:796–805.PMC280652119836940Dar AA, Goff LW, Majid S, Berlin J, El-Rifai W. Aurora kinase inhibitors--rising stars in cancer therapeutics? Mol Cancer Ther. 2010;9:268–78.PMC282058720124450Crosio C, Fimia GM, Loury R, Kimura M, Okano Y, Zhou H, et al. Mitotic phosphorylation of histone H3: spatio-temporal regulation by mammalian Aurora kinases. Mol Cell Biol. 2002;22:874–85.PMC13355011784863Mikecz K, Glant TT, Poole AR. Immunity to cartilage proteoglycans in BALB/c mice with progressive polyarthritis and ankylosing spondylitis induced by injection of human cartilage proteoglycan. Arthritis Rheum. 1987;30:306–18.3566822Glant TT, Mikecz K. Proteoglycan aggrecan-induced arthritis: a murine autoimmune model of rheumatoid arthritis. Methods Mol Med. 2004;102:313–38.15286393Glant TT, Radacs M, Nagyeri G, Olasz K, Laszlo A, Boldizsar F, et al. Proteoglycan-induced arthritis and recombinant human proteoglycan aggrecan G1 domain-induced arthritis in BALB/c mice resembling two subtypes of rheumatoid arthritis. Arthritis Rheum. 2011;63:1312–21.PMC308693321305522Mikecz K, Brennan FR, Kim JH, Glant TT. Anti-CD44 treatment abrogates tissue oedema and leukocyte infiltration in murine arthritis. Nat Med. 1995;1:558–63.7585123Adarichev VA, Valdez JC, Bardos T, Finnegan A, Mikecz K, Glant TT. Combined autoimmune models of arthritis reveal shared and independent qualitative (binary) and quantitative trait loci. J Immunol. 2003;170:2283–92.12594249Myers LK, Seyer JM, Stuart JM, Kang AH. Suppression of murine collagen-induced arthritis by nasal administration of collagen. Immunology. 1997;90:161–4.PMC14567489135541Glant TT, Adarichev VA, Nesterovitch AB, Szanto S, Oswald JP, Jacobs JJ, et al. Disease-associated qualitative and quantitative trait loci in proteoglycan-induced arthritis and collagen-induced arthritis. Am J Med Sci. 2004;327(4):188–95.15084914Yang D, Liu H, Goga A, Kim S, Yuneva M, Bishop JM. Therapeutic potential of a synthetic lethal interaction between the MYC proto-oncogene and inhibition of aurora-B kinase. Proc Natl Acad Sci U S A. 2010;107:13836–41.PMC292223220643922Taylor S, Wakem M, Dijkman G, Alsarraj M, Nguyen M. A practical approach to RT-qPCR-Publishing data that conform to the MIQE guidelines. Methods. 2010;50:S1–S5.20215014Tate CM, Lee JH, Skalnik DG. CXXC finger protein 1 contains redundant functional domains that support embryonic stem cell cytosine methylation, histone methylation, and differentiation. Mol Cell Biol. 2009;29:3817–31.PMC270474019433449Boldizsar F, Kis-Toth K, Tarjanyi O, Olasz K, Hegyi A, Mikecz K, et al. Impaired activation-induced cell death promotes spontaneous arthritis in antigen (cartilage proteoglycan)-specific T cell receptor-transgenic mice. Arthritis Rheum. 2010;62(10):2984–94.PMC295204420564001Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO, III, et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis. 2010;69:1580–8.20699241Beck IM, Vanden Berghe W, Vermeulen L, Bougarne N, Vander CB, Haegeman G, et al. Altered subcellular distribution of MSK1 induced by glucocorticoids contributes to NF-kappaB inhibition. EMBO J. 2008;27:1682–93.PMC243513018511904Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, et al. IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science. 1997;278:860–6.9346484Angyal A, Egelston C, Kobezda T, Olasz K, Laszlo A, Glant TT, et al. Development of proteoglycan-induced arthritis depends on T cell-supported autoantibody production, but does not involve significant influx of T cells into the joints. Arthritis Res Ther. 2010;12:R44.PMC288819220298547Cantaert T, Kolln J, Timmer T, van der Pouw Kraan TC, Vandooren B, Thurlings RM, et al. B lymphocyte autoimmunity in rheumatoid synovitis is independent of ectopic lymphoid neogenesis. J Immunol. 2008;181:785–94.18566445Dorner T, Radbruch A, Burmester GR. B-cell-directed therapies for autoimmune disease. Nat Rev Rheumatol. 2009;5:433–41.19581902Kotzin BL. The role of B cells in the pathogenesis of rheumatoid arthritis. J Rheumatol Suppl. 2005;73:14–8.15693111Harrington EA, Bebbington D, Moore J, Rasmussen RK, Ajose-Adeogun AO, Nakayama T, et al. VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med. 2004;10(3):262–7.14981513Gizatullin F, Yao Y, Kung V, Harding MW, Loda M, Shapiro GI. The Aurora kinase inhibitor VX-680 induces endoreduplication and apoptosis preferentially in cells with compromised p53-dependent postmitotic checkpoint function. Cancer Res. 2006;66(15):7668–77.16885368Yu J, Wang Z, Kinzler KW, Vogelstein B, Zhang L. PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc Natl Acad Sci U S A. 2003;100(4):1931–6.PMC14993612574499Karouzakis E, Gay RE, Gay S, Neidhart M. Epigenetic control in rheumatoid arthritis synovial fibroblasts. Nat Rev Rheumatol. 2009;5(5):266–72.19412193Karouzakis E, Gay RE, Michel BA, Gay S, Neidhart M. DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 2009;60(12):3613–22.19950268Huber LC, Brock M, Hemmatazad H, Giger OT, Moritz F, Trenkmann M, et al. Histone deacetylase/acetylase activity in total synovial tissue derived from rheumatoid arthritis and osteoarthritis patients. Arthritis Rheum. 2007;56(4):1087–93.17393417Meinecke I, Cinski A, Baier A, Peters MA, Dankbar B, Wille A, et al. Modification of nuclear PML protein by SUMO-1 regulates Fas-induced apoptosis in rheumatoid arthritis synovial fibroblasts. Proc Natl Acad Sci U S A. 2007;104(12):5073–8.PMC182926617360386Ospelt C, Gay S. The role of resident synovial cells in destructive arthritis. Best Pract Res Clin Rheumatol. 2008;22(2):239–52.18455682Wolter S, Doerrie A, Weber A, Schneider H, Hoffmann E, von der OJ, et al. c-Jun controls histone modifications, NF-kappaB recruitment, and RNA polymerase II function to activate the ccl2 gene. Mol Cell Biol. 2008;28:4407–23.PMC244714118443042Levy D, Kuo AJ, Chang Y, Schaefer U, Kitson C, Cheung P, et al. Lysine methylation of the NF-kappaB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-kappaB signaling. Nat Immunol. 2011;12(1):29–36.PMC307420621131967Levy D, Liu CL, Yang Z, Newman AM, Alizadeh AA, Utz PJ, et al. A proteomic approach for the identification of novel lysine methyltransferase substrates. Epigenetics Chromatin. 2011;4:19.PMC321290522024134Villagra A, Cheng F, Wang HW, Suarez I, Glozak M, Maurin M, et al. The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol. 2009;10:92–100.PMC392568519011628Satoh T, Takeuchi O, Vandenbon A, Yasuda K, Tanaka Y, Kumagai Y, et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol. 2010;11:936–44.20729857Jeon YJ, Lee KY, Cho YY, Pugliese A, Kim HG, Jeong CH, et al. Role of NEK6 in tumor promoter-induced transformation in JB6 C141 mouse skin epidermal cells. J Biol Chem. 2010;285:28126–33.PMC293467720595392Kishimoto T. IL-6: from its discovery to clinical applications. Int Immunol. 2010;22:347–52.20410258Mori T, Miyamoto T, Yoshida H, Asakawa M, Kawasumi M, Kobayashi T, et al. IL-1beta and TNFalpha-initiated IL-6-STAT3 pathway is critical in mediating inflammatory cytokines and RANKL expression in inflammatory arthritis. Int Immunol. 2011;23:701–12.21937456Leandro MJ, Becerra-Fernandez E. B-cell therapies in established rheumatoid arthritis. Best Pract Res Clin Rheumatol. 2011;25:535–48.22137923Nakken B, Munthe LA, Konttinen YT, Sandberg AK, Szekanecz Z, Alex P, et al. B-cells and their targeting in rheumatoid arthritis--current concepts and future perspectives. Autoimmun Rev. 2011;11:28–34.21777703Yazici Y. Long-term safety of methotrexate in the treatment of rheumatoid arthritis. Clin Exp Rheumatol. 2010;28:S65–S67.21044436Albrecht K, Muller-Ladner U. Side effects and management of side effects of methotrexate in rheumatoid arthritis. Clin Exp Rheumatol. 2010;28:S95–101.21044440
235641832014012420220310
1559-0755562-32013JulImmunologic researchImmunol ResPharmacogenetics and pharmacogenomics in rheumatology.325333325-3310.1007/s12026-013-8405-zPharmacogenetics and pharmacogenomics deal with possible associations of a single genetic polymorphism or those of multiple gene profiles with responses to drugs. In rheumatology, genes and gene signatures may be associated with altered efficacy and/or safety of anti-inflammatory drugs, disease-modifying antirheumatic drugs (DMARDs) and biologics. In brief, genes of cytochrome P450, other enzymes involved in drug metabolism, transporters and some cytokines have been associated with responses to and toxicity of non-steroidal anti-inflammatory drugs, corticosteroids and DMARDs. The efficacy of biologics may be related to alterations in cytokine, chemokine and FcγR genes. Numerous studies reported multiple genetic signatures in association with responses to biologics; however, data are inconclusive. More, focused studies carried out in larger patient cohorts, using pre-selected genes, may be needed in order to determine the future of pharmacogenetics and pharmacogenomics as tools for personalized medicine in rheumatology.SzekaneczZoltánZDepartment of Rheumatology, Institute of Medicine, University of Debrecen Medical and Health Science Center, Nagyerdei Street 98, 4032, Debrecen, Hungary. szekanecz.zoltan@med.unideb.huMeskóBertalanBPoliskaSzilardSVáncsaAndreaASzamosiSzilviaSVéghEditESimkovicsEniköELakiJuditJKurkóJúliaJBesenyeiTimeaTMikeczKatalinKGlantTibor TTTNagyLászlóLengR01 AR059356ARNIAMS NIH HHSUnited StatesR01 AR064206ARNIAMS NIH HHSUnited StatesJournal ArticleResearch Support, Non-U.S. Gov'tReview
United StatesImmunol Res86110870257-277X0Antirheumatic Agents0Biomarkers, Pharmacological0Cytokines0Membrane Transport Proteins0Receptors, Cytokine0Receptors, IgG9035-51-2Cytochrome P-450 Enzyme SystemIMAnimalsAntirheumatic Agentspharmacokineticstherapeutic useArthritis, Rheumatoiddrug therapygeneticsBiomarkers, PharmacologicalmetabolismBiotransformationgeneticsClinical Trials as TopicCytochrome P-450 Enzyme SystemgeneticsmetabolismCytokinesgeneticsHumansMembrane Transport ProteinsgeneticsmetabolismMutationgeneticsPharmacogeneticsPolymorphism, Single NucleotidePrecision MedicineReceptors, CytokinegeneticsmetabolismReceptors, IgGgeneticsRheumatologytrendsTranscriptomegenetics
20134960201349602014125602014820ppublish23564183NIHMS614609PMC413928210.1007/s12026-013-8405-zAlamanos Y, Drosos AA. Epidemiology of adult rheumatoid arthritis. Autoimmun Rev. 2005;4(3):130–6.15823498Smolen JS, Landewe R, Breedveld FC, Dougados M, Emery P, Gaujoux-Viala C, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs. Ann Rheum Dis. 2010;69(6):964–75.PMC293532920444750Raza K, Buckley CE, Salmon M, Buckley CD. Treating very early rheumatoid arthritis. Best Pract Res Clin Rheumatol. 2006;20(5):849–63.PMC314512016980210Smolen JS, Landewe R, Breedveld FC, Dougados M, Emery P, Gaujoux-Viala C, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs. Ann Rheum Dis. 2010;69:964–75.PMC293532920444750Smolen JS, Aletaha D, Bijlsma JW, Breedveld FC, Boumpas D, Burmester G, et al. Treating rheumatoid arthritis to target: recommendations of an international task force. Ann Rheum Dis. 2010;69(4):631–7.PMC301509920215140Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO, 3rd, et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis. 2010;69(9):1580–8.20699241Smolen JS, Landewe R, Breedveld FC, Dougados M, Emery P, Gaujoux-Viala C, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs. Ann Rheum Dis. 69(6):964–75.PMC293532920444750Felson DT, Smolen JS, Wells G, Zhang B, van Tuyl LH, Funovits J, et al. American College of Rheumatology/European League against Rheumatism provisional definition of remission in rheumatoid arthritis for clinical trials. Ann Rheum Dis. 2011;70(3):404–13.21292833de Vries RR, van der Woude D, Houwing JJ, Toes RE. Genetics of ACPA-positive rheumatoid arthritis: the beginning of the end? Ann Rheum Dis. 2011;70 (Suppl 1):i51–4.21339219Szodoray P, Szabo Z, Kapitany A, Gyetvai A, Lakos G, Szanto S, et al. Anti-citrullinated protein/peptide autoantibodies in association with genetic and environmental factors as indicators of disease outcome in rheumatoid arthritis. Autoimmun Rev. 2010;9(3):140–3.19427413Daha NA, Toes RE. Rheumatoid arthritis: Are ACPA-positive and ACPA-negative RA the same disease? Nat Rev Rheumatol. 2011;7(4):202–3.21455249Lundstrom E, Kallberg H, Smolnikova M, Ding B, Ronnelid J, Alfredsson L, et al. Opposing effects of HLA-DRB1*13 alleles on the risk of developing anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis. Arthritis Rheum. 2009;60(4):924–30.19333936Laki J, Lundstrom E, Snir O, Ronnelid J, Ganji I, Catrina AI, et al. Very high levels of anti-citrullinated protein antibodies are associated with HLA-DRB1*15 non-shared epitope allele in patients with rheumatoid arthritis. Arthritis Rheum. 2012;64(7):2078–84.22307773van der Helm-van Mil AH, Wesoly JZ, Huizinga TW. Understanding the genetic contribution to rheumatoid arthritis. Curr Opin Rheumatol. 2005;17(3):299–304.15838240van der Helm-van Mil AH, Toes RE, Huizinga TW. Genetic variants in the prediction of rheumatoid arthritis. Ann Rheum Dis. 2010;69(9):1694–6.20439292Cronstein BN. Pharmacogenetics in the rheumatic diseases, from pret-a-porter to haute couture. Nat Clin Pract Rheumatol. 2006;2(1):2–3.16932642Ranganathan P. Pharmacogenomics in rheumatoid arthritis. Methods Mol Biol. 2008;448:413–35.18370240Davila L, Ranganathan P. Pharmacogenetics: implications for therapy in rheumatic diseases. Nat Rev Rheumatol. 2011;7(9):537–50.21826093Verweij CL. Pharmacogenetics: Anti-TNF therapy in RA--towards personalized medicine? Nat Rev Rheumatol. 2011;7(3):136–8.21304506Roses AD. Pharmacogenetics. Hum Mol Genet. 2001;10(20):2261–7.11673409Emery P, Dorner T. Optimising treatment in rheumatoid arthritis: a review of potential biological markers of response. Ann Rheum Dis. 2011;70(12):2063–70.22039166Miossec P, Verweij CL, Klareskog L, Pitzalis C, Barton A, Lekkerkerker F, et al. Biomarkers and personalised medicine in rheumatoid arthritis: a proposal for interactions between academia, industry and regulatory bodies. Ann Rheum Dis. 2011;70(10):1713–8.21784723Stamer UM, Zhang L, Stuber F. Personalized therapy in pain management: where do we stand? Pharmacogenomics. 2010;11(6):843–64.20504256Bradford LD. CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics. 2002;3(2):229–43.11972444Xie HG, Prasad HC, Kim RB, Stein CM. CYP2C9 allelic variants: ethnic distribution and functional significance. Adv Drug Deliv Rev. 2002;54(10):1257–70.12406644van Kalken CK, Broxterman HJ, Pinedo HM, Feller N, Dekker H, Lankelma J, et al. Cortisol is transported by the multidrug resistance gene product P-glycoprotein. Br J Cancer. 1993;67(2):284–9.PMC19681718094292Daniel F, Loriot MA, Seksik P, Cosnes J, Gornet JM, Lemann M, et al. Multidrug resistance gene-1 polymorphisms and resistance to cyclosporine A in patients with steroid resistant ulcerative colitis. Inflamm Bowel Dis. 2007;13(1):19–23.17206635Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmoller J, Johne A, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A. 2000;97(7):3473–8.PMC1626410716719Wasilewska A, Zalewski G, Chyczewski L, Zoch-Zwierz W. MDR-1 gene polymorphisms and clinical course of steroid-responsive nephrotic syndrome in children. Pediatr Nephrol. 2007;22(1):44–51.17043887Borowski LC, Lopes RP, Gonzalez TP, Dummer LA, Chies JA, Silveira IG, et al. Is steroid resistance related to multidrug resistance-I (MDR-I) in rheumatoid arthritis? Int Immunopharmacol. 2007;7(6):836–44.17466917Richaud-Patin Y, Vega-Boada F, Vidaller A, Llorente L. Multidrug resistance-1 (MDR-1) in autoimmune disorders IV. P-glycoprotein overfunction in lymphocytes from myasthenia gravis patients. Biomed Pharmacother. 2004;58(5):320–4.15194168Llorente L, Richaud-Patin Y, Diaz-Borjon A, Alvarado de la Barrera C, Jakez-Ocampo J, de la Fuente H, et al. Multidrug resistance-1 (MDR-1) in rheumatic autoimmune disorders. Part I: Increased P-glycoprotein activity in lymphocytes from rheumatoid arthritis patients might influence disease outcome. Joint Bone Spine. 2000;67(1):30–9.10773966Davila L, Ranganathan P. Pharmacogenetics: implications for therapy in rheumatic diseases. Nat Rev Rheumatol. 2011;7(9):537–50.21826093Ulrich CM, Yasui Y, Storb R, Schubert MM, Wagner JL, Bigler J, et al. Pharmacogenetics of methotrexate: toxicity among marrow transplantation patients varies with the methylenetetrahydrofolate reductase C677T polymorphism. Blood. 2001;98(1):231–4.11418485Toffoli G, Veronesi A, Boiocchi M, Crivellari D. MTHFR gene polymorphism and severe toxicity during adjuvant treatment of early breast cancer with cyclophosphamide, methotrexate, and fluorouracil (CMF) Ann Oncol. 2000;11(3):373–4.10811509van Ede AE, Laan RF, Blom HJ, Huizinga TW, Haagsma CJ, Giesendorf BA, et al. The C677T mutation in the methylenetetrahydrofolate reductase gene: a genetic risk factor for methotrexate-related elevation of liver enzymes in rheumatoid arthritis patients. Arthritis Rheum. 2001;44(11):2525–30.11710708Lee YH, Song GG. Associations between the C677T and A1298C polymorphisms of MTHFR and the efficacy and toxicity of methotrexate in rheumatoid arthritis: a meta-analysis. Clin Drug Investig. 2010;30(2):101–8.20067328van der Put NM, Gabreels F, Stevens EM, Smeitink JA, Trijbels FJ, Eskes TK, et al. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet. 1998;62(5):1044–51.PMC13770829545395Berkun Y, Levartovsky D, Rubinow A, Orbach H, Aamar S, Grenader T, et al. Methotrexate related adverse effects in patients with rheumatoid arthritis are associated with the A1298C polymorphism of the MTHFR gene. Ann Rheum Dis. 2004;63(10):1227–31.PMC175475615361376Kang SS, Wong PW, Zhou JM, Sora J, Lessick M, Ruggie N, et al. Thermolabile methylenetetrahydrofolate reductase in patients with coronary artery disease. Metabolism. 1988;37(7):611–3.3386531Kang SS, Zhou J, Wong PW, Kowalisyn J, Strokosch G. Intermediate homocysteinemia: a thermolabile variant of methylenetetrahydrofolate reductase. Am J Hum Genet. 1988;43(4):414–21.PMC17155033177384Urano W, Taniguchi A, Yamanaka H, Tanaka E, Nakajima H, Matsuda Y, et al. Polymorphisms in the methylenetetrahydrofolate reductase gene were associated with both the efficacy and the toxicity of methotrexate used for the treatment of rheumatoid arthritis, as evidenced by single locus and haplotype analyses. Pharmacogenetics. 2002;12(3):183–90.11927833De Mattia E, Toffoli G. C677T and A1298C MTHFR polymorphisms, a challenge for antifolate and fluoropyrimidine-based therapy personalisation. Eur J Cancer. 2009;45(8):1333–51.19144510Friedman G, Goldschmidt N, Friedlander Y, Ben-Yehuda A, Selhub J, Babaey S, et al. A common mutation A1298C in human methylenetetrahydrofolate reductase gene: association with plasma total homocysteine and folate concentrations. J Nutr. 1999;129(9):1656–61.10460200Palomino-Morales R, Gonzalez-Juanatey C, Vazquez-Rodriguez TR, Rodriguez L, Miranda-Filloy JA, Fernandez-Gutierrez B, et al. A1298C polymorphism in the MTHFR gene predisposes to cardiovascular risk in rheumatoid arthritis. Arthritis Res Ther. 2010;12(2):R71.PMC288822720423475Rothem L, Aronheim A, Assaraf YG. Alterations in the expression of transcription factors and the reduced folate carrier as a novel mechanism of antifolate resistance in human leukemia cells. J Biol Chem. 2003;278(11):8935–41.12519783Dervieux T, Furst D, Lein DO, Capps R, Smith K, Walsh M, et al. Polyglutamation of methotrexate with common polymorphisms in reduced folate carrier, aminoimidazole carboxamide ribonucleotide transformylase, and thymidylate synthase are associated with methotrexate effects in rheumatoid arthritis. Arthritis Rheum. 2004;50(9):2766–74.15457444Dervieux T, Kremer J, Lein DO, Capps R, Barham R, Meyer G, et al. Contribution of common polymorphisms in reduced folate carrier and gamma-glutamylhydrolase to methotrexate polyglutamate levels in patients with rheumatoid arthritis. Pharmacogenetics. 2004;14(11):733–9.15564880Pawlik A, Wrzesniewska J, Fiedorowicz-Fabrycy I, Gawronska-Szklarz B. The MDR1 3435 polymorphism in patients with rheumatoid arthritis. Int J Clin Pharmacol Ther. 2004;42(9):496–503.15487808Horie N, Aiba H, Oguro K, Hojo H, Takeishi K. Functional analysis and DNA polymorphism of the tandemly repeated sequences in the 5′-terminal regulatory region of the human gene for thymidylate synthase. Cell Struct Funct. 1995;20(3):191–7.7586009Ranganathan P, Culverhouse R, Marsh S, Mody A, Scott-Horton TJ, Brasington R, et al. Methotrexate (MTX) pathway gene polymorphisms and their effects on MTX toxicity in Caucasian and African American patients with rheumatoid arthritis. J Rheumatol. 2008;35(4):572–9.18381794Kumagai K, Hiyama K, Oyama T, Maeda H, Kohno N. Polymorphisms in the thymidylate synthase and methylenetetrahydrofolate reductase genes and sensitivity to the low-dose methotrexate therapy in patients with rheumatoid arthritis. Int J Mol Med. 2003;11(5):593–600.12684695Takatori R, Takahashi KA, Tokunaga D, Hojo T, Fujioka M, Asano T, et al. ABCB1 C3435T polymorphism influences methotrexate sensitivity in rheumatoid arthritis patients. Clin Exp Rheumatol. 2006;24(5):546–54.17181924Dervieux T, Furst D, Lein DO, Capps R, Smith K, Caldwell J, et al. Pharmacogenetic and metabolite measurements are associated with clinical status in patients with rheumatoid arthritis treated with methotrexate: results of a multicentred cross sectional observational study. Ann Rheum Dis. 2005;64(8):1180–5.PMC175560215677700Tolusso B, Pietrapertosa D, Morelli A, De Santis M, Gremese E, Farina G, et al. IL-1B and IL-1RN gene polymorphisms in rheumatoid arthritis: relationship with protein plasma levels and response to therapy. Pharmacogenomics. 2006;7(5):683–95.16886894Kumagai S, Komada F, Kita T, Morinobu A, Ozaki S, Ishida H, et al. N-acetyltransferase 2 genotype-related efficacy of sulfasalazine in patients with rheumatoid arthritis. Pharm Res. 2004;21(2):324–9.15032315Tanaka E, Taniguchi A, Urano W, Nakajima H, Matsuda Y, Kitamura Y, et al. Adverse effects of sulfasalazine in patients with rheumatoid arthritis are associated with diplotype configuration at the N-acetyltransferase 2 gene. J Rheumatol. 2002;29(12):2492–9.12465141Cohen SB, Iqbal I. Leflunomide. Int J Clin Pract. 2003;57(2):115–20.12661795Lennard L, Van Loon JA, Weinshilboum RM. Pharmacogenetics of acute azathioprine toxicity: relationship to thiopurine methyltransferase genetic polymorphism. Clin Pharmacol Ther. 1989;46(2):149–54.2758725Lennard L, Lilleyman JS. Individualizing therapy with 6-mercaptopurine and 6-thioguanine related to the thiopurine methyltransferase genetic polymorphism. Ther Drug Monit. 1996;18(4):328–34.8857546Clunie GP, Lennard L. Relevance of thiopurine methyltransferase status in rheumatology patients receiving azathioprine. Rheumatology (Oxford) 2004;43(1):13–8.14566029Bonhomme-Faivre L, Devocelle A, Saliba F, Chatled S, Maccario J, Farinotti R, et al. MDR-1 C3435T polymorphism influences cyclosporine a dose requirement in liver-transplant recipients. Transplantation. 2004;78(1):21–5.15257034van Vollenhoven RF. Switching between anti-tumour necrosis factors: trying to get a handle on a complex issue. Ann Rheum Dis. 2007;66(7):849–51.PMC195511617576784Radstake TR, Petit E, Pierlot C, van de Putte LB, Cornelis F, Barrera P. Role of Fcgamma receptors IIA, IIIA, and IIIB in susceptibility to rheumatoid arthritis. J Rheumatol. 2003;30(5):926–33.12734884Sfar I, Dhaouadi T, Habibi I, Abdelmoula L, Makhlouf M, Ben Romdhane T, et al. Functional polymorphisms of PTPN22 and FcgR genes in Tunisian patients with rheumatoid arthritis. Arch Inst Pasteur Tunis. 2009;86(1–4):51–62.20707220Tutuncu Z, Kavanaugh A, Zvaifler N, Corr M, Deutsch R, Boyle D. Fcgamma receptor type IIIA polymorphisms influence treatment outcomes in patients with inflammatory arthritis treated with tumor necrosis factor alpha-blocking agents. Arthritis Rheum. 2005;52(9):2693–6.16142749Coulthard LR, Taylor JC, Eyre S, Robinson JI, Wilson AG, Isaacs JD, et al. Genetic variants within the MAP kinase signalling network and anti-TNF treatment response in rheumatoid arthritis patients. Ann Rheum Dis. 2010;70(1):98–103.20805296Ruyssen-Witrand A, Rouanet S, Combe B, Dougados M, Le Loet X, Sibilia J, et al. Fcgamma receptor type IIIA polymorphism influences treatment outcomes in patients with rheumatoid arthritis treated with rituximab. Ann Rheum Dis. 2012;71(6):875–7.22368231Fabris M, Quartuccio L, Lombardi S, Saracco M, Atzeni F, Carletto A, et al. The CC homozygosis of the −174G>C IL-6 polymorphism predicts a lower efficacy of rituximab therapy in rheumatoid arthritis. Autoimmun Rev. 2010;11(5):315–20.20974296Gragnani L, Piluso A, Giannini C, Caini P, Fognani E, Monti M, et al. Genetic determinants in hepatitis C virus-associated mixed cryoglobulinemia: role of polymorphic variants of BAFF promoter and Fcgamma receptors. Arthritis Rheum. 2011;63(5):1446–51.21538321Danila MI, Hughes LB, Bridges SL. Pharmacogenetics of etanercept in rheumatoid arthritis. Pharmacogenomics. 2008;9(8):1011–5.PMC374650418681777Koczan D, Drynda S, Hecker M, Drynda A, Guthke R, Kekow J, et al. Molecular discrimination of responders and nonresponders to anti-TNF alpha therapy in rheumatoid arthritis by etanercept. Arthritis Res Ther. 2008;10(3):R50.PMC248343918454843Padyukov L, Lampa J, Heimburger M, Ernestam S, Cederholm T, Lundkvist I, et al. Genetic markers for the efficacy of tumour necrosis factor blocking therapy in rheumatoid arthritis. Ann Rheum Dis. 2003;62(6):526–9.PMC175456912759288Julia A, Erra A, Palacio C, Tomas C, Sans X, Barcelo P, et al. An eight-gene blood expression profile predicts the response to infliximab in rheumatoid arthritis. PLoS ONE. 2009;4(10):e7556.PMC276203819847310Lequerre T, Gauthier-Jauneau AC, Bansard C, Derambure C, Hiron M, Vittecoq O, et al. Gene profiling in white blood cells predicts infliximab responsiveness in rheumatoid arthritis. Arthritis Res Ther. 2006;8(4):R105.PMC177940516817978Sekiguchi N, Kawauchi S, Furuya T, Inaba N, Matsuda K, Ando S, et al. Messenger ribonucleic acid expression profile in peripheral blood cells from RA patients following treatment with an anti-TNF-alpha monoclonal antibody, infliximab. Rheumatology (Oxford) 2008;47(6):780–8.18388148Mugnier B, Balandraud N, Darque A, Roudier C, Roudier J, Reviron D. Polymorphism at position −308 of the tumor necrosis factor alpha gene influences outcome of infliximab therapy in rheumatoid arthritis. Arthritis Rheum. 2003;48(7):1849–52.12847678Plant D, Bowes J, Potter C, Hyrich KL, Morgan AW, Wilson AG, et al. Genome-wide association study of genetic predictors of anti-tumor necrosis factor treatment efficacy in rheumatoid arthritis identifies associations with polymorphisms at seven loci. Arthritis Rheum. 2011;63(3):645–53.PMC308450821061259Verweij CL. Pharmacogenetics: Anti-TNF therapy in RA--towards personalized medicine? Nat Rev Rheumatol. 2011;7(3):136–8.21304506Coulthard LR, Taylor JC, Eyre S, Robinson JI, Wilson AG, Isaacs JD, et al. Genetic variants within the MAP kinase signalling network and anti-TNF treatment response in rheumatoid arthritis patients. Ann Rheum Dis. 2011;70(1):98–103.20805296Potter C, Cordell HJ, Barton A, Daly AK, Hyrich KL, Mann DA, et al. Association between anti-tumour necrosis factor treatment response and genetic variants within the TLR and NF{kappa}B signalling pathways. Ann Rheum Dis. 2010;69(7):1315–20.20448286Potter C, Hyrich KL, Tracey A, Lunt M, Plant D, Symmons DP, et al. Association of rheumatoid factor and anti-cyclic citrullinated peptide positivity, but not carriage of shared epitope or PTPN22 susceptibility variants, with anti-tumour necrosis factor response in rheumatoid arthritis. Ann Rheum Dis. 2009;68(1):69–74.PMC259630318375541Raterman HG, Vosslamber S, de Ridder S, Nurmohamed MT, Lems WF, Boers M, et al. The interferon type I signature towards prediction of non-response to rituximab in rheumatoid arthritis patients. Arthritis Res Ther. 2012;14(2):R95.PMC344646922540992Mesko B, Poliska S, Szamosi S, Szekanecz Z, Podani J, Varadi C, et al. Peripheral blood gene expression and IgG glycosylation profiles as markers of tocilizumab treatment in rheumatoid arthritis. J Rheumatol. 2012;39(5):916–28.22467923Mattey DL, Brownfield A, Dawes PT. Relationship between pack-year history of smoking and response to tumor necrosis factor antagonists in patients with rheumatoid arthritis. J Rheumatol. 2009;36(6):1180–7.19447930Mesko B, Poliska S, Nagy L. Gene expression profiles in peripheral blood for the diagnosis of autoimmune diseases. Trends Mol Med. 2011;17(4):223–33.21388884Mesko B, Poliska S, Szegedi A, Szekanecz Z, Palatka K, Papp M, et al. Peripheral blood gene expression patterns discriminate among chronic inflammatory diseases and healthy controls and identify novel targets. BMC Med Genomics. 2010;3:15.PMC287475720444268Marsal S, Julia A. Rheumatoid arthritis pharmacogenomics. Pharmacogenomics. 2010;11(5):617–9.20415547Filkova M, Jungel A, Gay RE, Gay S. MicroRNAs in rheumatoid arthritis: potential role in diagnosis and therapy. BioDrugs. 2012;26(3):131–41.22494429Tzvetkov M, von Ahsen N. Pharmacogenetic screening for drug therapy: from single gene markers to decision making in the next generation sequencing era. Pathology. 2012;44(2):166–80.22228255
232886282014033120220409
1559-02674522013OctClinical reviews in allergy & immunologyClin Rev Allergy ImmunolGenetics of rheumatoid arthritis - a comprehensive review.170179170-910.1007/s12016-012-8346-7The "Bermuda triangle" of genetics, environment and autoimmunity is involved in the pathogenesis of rheumatoid arthritis (RA). Various aspects of genetic contribution to the etiology, pathogenesis and outcome of RA are discussed in this review. The heritability of RA has been estimated to be about 60 %, while the contribution of HLA to heritability has been estimated to be 11-37 %. Apart from known shared epitope (SE) alleles, such as HLA-DRB1*01 and DRB1*04, other HLA alleles, such as HLA-DRB1*13 and DRB1*15 have been linked to RA susceptibility. A novel SE classification divides SE alleles into S1, S2, S3P and S3D groups, where primarily S2 and S3P groups have been associated with predisposition to seropositive RA. The most relevant non-HLA gene single nucleotide polymorphisms (SNPs) associated with RA include PTPN22, IL23R, TRAF1, CTLA4, IRF5, STAT4, CCR6, PADI4. Large genome-wide association studies (GWAS) have identified more than 30 loci involved in RA pathogenesis. HLA and some non-HLA genes may differentiate between anti-citrullinated protein antibody (ACPA) seropositive and seronegative RA. Genetic susceptibility has also been associated with environmental factors, primarily smoking. Some GWAS studies carried out in rodent models of arthritis have confirmed the role of human genes. For example, in the collagen-induced (CIA) and proteoglycan-induced arthritis (PgIA) models, two important loci - Pgia26/Cia5 and Pgia2/Cia2/Cia3, corresponding the human PTPN22/CD2 and TRAF1/C5 loci, respectively - have been identified. Finally, pharmacogenomics identified SNPs or multiple genetic signatures that may be associated with responses to traditional disease-modifying drugs and biologics.KurkóJúliaJDepartment of Rheumatology, Institute of Medicine, University of Debrecen Medical and Health Science Center, Nagyerdei str 98, Debrecen, 4032, Hungary.BesenyeiTimeaTLakiJuditJGlantTibor TTTMikeczKatalinKSzekaneczZoltánZengR01 AR059356ARNIAMS NIH HHSUnited StatesJournal ArticleResearch Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov'tReview
United StatesClin Rev Allergy Immunol95043681080-05490HLA Antigens0IL23R protein, human0Receptors, Interleukin0TNF Receptor-Associated Factor 1EC 3.1.3.48PTPN22 protein, humanEC 3.1.3.48Protein Tyrosine Phosphatase, Non-Receptor Type 22IMAnimalsArthritis, RheumatoidetiologygeneticsimmunologyDisease Models, AnimalGene-Environment InteractionGenetic Predisposition to DiseaseGenome-Wide Association StudyHLA AntigensgeneticsHumansMicePolymorphism, GeneticProtein Tyrosine Phosphatase, Non-Receptor Type 22geneticsRatsReceptors, InterleukingeneticsSmokingadverse effectsTNF Receptor-Associated Factor 1genetics
2013156020131560201441602013101ppublish23288628NIHMS440178PMC365513810.1007/s12016-012-8346-7Alamanos Y, Drosos AA. Epidemiology of adult rheumatoid arthritis. Autoimmun Rev. 2005;4(3):130–136.15823498Klareskog L, Padyukov L, Alfredsson L. Smoking as a trigger for inflammatory rheumatic diseases. Curr Opin Rheumatol. 2007;19(1):49–54.17143096van der Helm-van Mil AH, Wesoly JZ, Huizinga TW. Understanding the genetic contribution to rheumatoid arthritis. Curr Opin Rheumatol. 2005;17(3):299–304.15838240van der Woude D, Alemayehu WG, Verduijn W, de Vries RR, Houwing-Duistermaat JJ, Huizinga TW, et al. Gene–environment interaction influences the reactivity of autoantibodies to citrullinated antigens in rheumatoid arthritis. Nat Genet. 2010;42(10):814–816. author reply 816.20877316Szodoray P, Szabo Z, Kapitany A, Gyetvai A, Lakos G, Szanto S, et al. Anti-citrullinated protein/peptide autoantibodies in association with genetic and environmental factors as indicators of disease outcome in rheumatoid arthritis. Autoimmun Rev. 2010;9(3):140–143.19427413de Vries R. Genetics of rheumatoid arthritis: time for a change! Curr Opin Rheumatol. 2011;23(3):227–232.21427575Cooles FA, Isaacs JD. Pathophysiology of rheumatoid arthritis. Curr Opin Rheumatol. 23(3):233–240.21427580Szekanecz Z, Soos L, Szabo Z, Fekete A, Kapitany A, Vegvari A, et al. Anti-citrullinated protein antibodies in rheumatoid arthritis: as good as it gets? Clin Rev Allergy Immunol. 2008;34(1):26–31.18270854Klareskog L, Padyukov L, Lorentzen J, Alfredsson L. Mechanisms of disease: genetic susceptibility and environmental triggers in the development of rheumatoid arthritis. Nat Clin Pract Rheumatol. 2006;2(8):425–433.16932734Padyukov L, Silva C, Stolt P, Alfredsson L, Klareskog L. A gene–environment interaction between smoking and shared epitope genes in HLA-DR provides a high risk of seropositive rheumatoid arthritis. Arthritis Rheum. 2004;50(10):3085–3092.15476204Smolen JS, Landewe R, Breedveld FC, Dougados M, Emery P, Gaujoux-Viala C, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs. Ann Rheum Dis. 2010;69(6):964–975.PMC293532920444750MacGregor AJ, Snieder H, Rigby AS, Koskenvuo M, Kaprio J, Aho K, et al. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum. 2000;43(1):30–37.10643697Mesko B, Poliska S, Szegedi A, Szekanecz Z, Palatka K, Papp M, et al. Peripheral blood gene expression patterns discriminate among chronic inflammatory diseases and healthy controls and identify novel targets. BMC Med Genomics. 2010;3:15.PMC287475720444268Lee HS, Irigoyen P, Kern M, Lee A, Batliwalla F, Khalili H, et al. Interaction between smoking, the shared epitope, and anti-cyclic citrullinated peptide: a mixed picture in three large North American rheumatoid arthritis cohorts. Arthritis Rheum. 2007;56(6):1745–1753.17530703Kapitany A, Szabo Z, Lakos G, Aleksza M, Vegvari A, Soos L, et al. Associations between serum anti-CCP antibody, rheumatoid factor levels and HLA-DR4 expression in Hungarian patients with rheumatoid arthritis. Isr Med Assoc J. 2008;10(1):32–36.18300568Besenyei T, Gyetvai A, Szabo Z, Fekete A, Kapitany A, Szodoray P, et al. Associations of HLA-shared epitope, anti-citrullinated peptide antibodies and lifestyle-related factors in Hungarian patients with rheumatoid arthritis: data from the first Central-Eastern European cohort. Joint Bone Spine. 2011;78(6):652–653.21733730Scott IC, Steer S, Lewis CM, Cope AP. Precipitating and perpetuating factors of rheumatoid arthritis immunopathology: linking the triad of genetic predisposition, environmental risk factors and autoimmunity to disease pathogenesis. Best Pract Res Clin Rheumatol. 2011;25(4):447–468.22137917Vittecoq O, Lequerre T, Goeb V, Le Loet X, Abdesselam TA, Klemmer N. Smoking and inflammatory diseases. Best Pract Res Clin Rheumatol. 2008;22(5):923–935.19028372Davila L, Ranganathan P. Pharmacogenetics: implications for therapy in rheumatic diseases. Nat Rev Rheumatol. 2011;7(9):537–550.21826093Cronstein BN. Pharmacogenetics in the rheumatic diseases, from pret-a-porter to haute couture. Nat Clin Pract Rheumatol. 2006;2(1):2–3.16932642Danila MI, Hughes LB, Bridges SL. Pharmacogenetics of etanercept in rheumatoid arthritis. Pharmacogenomics. 2008;9(8):1011–1015.PMC374650418681777Mesko B, Poliska S, Szamosi S, Szekanecz Z, Podani J, Varadi C, et al. Peripheral blood gene expression and IgG glycosylation profiles as markers of tocilizumab treatment in rheumatoid arthritis. J Rheumatol. 2012;39(5):916–928.22467923Plant D, Bowes J, Potter C, Hyrich KL, Morgan AW, Wilson AG, et al. Genome-wide association study of genetic predictors of anti-tumor necrosis factor treatment efficacy in rheumatoid arthritis identifies associations with polymorphisms at seven loci. Arthritis Rheum. 2011;63(3):645–653.PMC308450821061259Centola M, Szekanecz Z, Kiss E, Zeher M, Szegedi G, Nakken B, et al. Gene expression profiles of systemic lupus erythematosus and rheumatoid arthritis. Expert Rev Clin Immunol. 2007;3(5):797–806.20477029Feng T, Zhu X. Genome-wide searching of rare genetic variants in WTCCC data. Hum Genet. 2010;128(3):269–280.PMC292244620549515Craddock N, Hurles ME, Cardin N, Pearson RD, Plagnol V, Robson S, et al. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature. 2010;464(7289):713–720.PMC289233920360734Adarichev VA, Vermes C, Hanyecz A, Mikecz K, Bremer EG, Glant TT. Gene expression profiling in murine autoimmune arthritis during the initiation and progression of joint inflammation. Arthritis Res Ther. 2005;7(2):R196–R207.PMC106531515743466Ahlqvist E, Hultqvist M, Holmdahl R. The value of animal models in predicting genetic susceptibility to complex diseases such as rheumatoid arthritis. Arthritis Res Ther. 2009;11(3):226.PMC271409419490601Glant TT, Finnegan A, Mikecz K. Proteoglycan-induced arthritis: immune regulation, cellular mechanisms, and genetics. Crit Rev Immunol. 2003;23(3):199–250.14584879Glant TT, Mikecz K, Arzoumanian A, Poole AR. Proteoglycan-induced arthritis in BALB/c mice. Clinical features and histopathology. Arthritis Rheum. 1987;30(2):201–212.3827960Glant TT, Adarichev VA, Nesterovitch AB, Szanto S, Oswald JP, Jacobs JJ, et al. Disease-associated qualitative and quantitative trait loci in proteoglycan-induced arthritis and collagen-induced arthritis. Am J Med Sci. 2004;327(4):188–195.15084914Deighton CM, Walker DJ, Griffiths ID, Roberts DF. The contribution of HLA to rheumatoid arthritis. Clin Genet. 1989;36(3):178–182.2676268Gregersen PK, Silver J, Winchester RJ. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 1987;30(11):1205–1213.2446635van der Woude D, Houwing-Duistermaat JJ, Toes RE, Huizinga TW, Thomson W, Worthington J, et al. Quantitative heritability of anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis. Arthritis Rheum. 2009;60(4):916–923.19333951van der Helm-van Mil AH, Verpoort KN, le Cessie S, Huizinga TW, de Vries RR, Toes RE. The HLA-DRB1 shared epitope alleles differ in the interaction with smoking and predisposition to antibodies to cyclic citrullinated peptide. Arthritis Rheum. 2007;56(2):425–432.17265477du Montcel ST, Michou L, Petit-Teixeira E, Osorio J, Lemaire I, Lasbleiz S, et al. New classification of HLA-DRB1 alleles supports the shared epitope hypothesis of rheumatoid arthritis susceptibility. Arthritis Rheum. 2005;52(4):1063–1068.15818663van der Woude D, Lie BA, Lundstrom E, Balsa A, Feitsma AL, Houwing-Duistermaat JJ, et al. Protection against anti-citrullinated protein antibody-positive rheumatoid arthritis is predominantly associated with HLA-DRB1*1301: a meta-analysis of HLADRB1 associations with anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis in four European populations. Arthritis Rheum. 2010;62(5):1236–1245.20131291Laki J, Lundstrom E, Snir O, Ronnelid J, Ganji I, Catrina AI, et al. Very high levels of anti-citrullinated protein antibodies are associated with HLA-DRB1*15 non-shared epitope allele in patients with rheumatoid arthritis. Arthritis Rheum. 2012;64(7):2078–2084.22307773Zsilak S, Gal J, Hodinka L, Rajczy K, Balog A, Sipka S, et al. HLA-DR genotypes in familial rheumatoid arthritis: increased frequency of protective and neutral alleles in a multicase family. J Rheumatol. 2005;32(12):2299–2302.16331753Jawaheer D, Thomson W, MacGregor AJ, Carthy D, Davidson J, Dyer PA, et al. "Homozygosity" for the HLA-DR shared epitope contributes the highest risk for rheumatoid arthritis concordance in identical twins. Arthritis Rheum. 1994;37(5):681–686.7514412Gyetvai A, Szekanecz Z, Soos L, Szabo Z, Fekete A, Kapitany A, et al. New classification of the shared epitope in rheumatoid arthritis: impact on the production of various anti-citrullinated protein antibodies. Rheumatology (Oxford) 200919920092Huizinga TW, Amos CI, van der Helm-van Mil AH, Chen W, van Gaalen FA, Jawaheer D, et al. Refining the complex rheumatoid arthritis phenotype based on specificity of the HLA-DRB1 shared epitope for antibodies to citrullinated proteins. Arthritis Rheum. 2005;52(11):3433–3438.16255021Bax M, van Heemst J, Huizinga TW, Toes RE. Genetics of rheumatoid arthritis: what have we learned? Immunogenetics. 2011;63(8):459–466.PMC313238021556860Farago B, Magyari L, Safrany E, Csongei V, Jaromi L, Horvatovich K, et al. Functional variants of interleukin-23 receptor gene confer risk for rheumatoid arthritis but not for systemic sclerosis. Ann Rheum Dis. 2008;67(2):248–250.17606463Farago B, Talian GC, Komlosi K, Nagy G, Berki T, Gyetvai A, et al. Protein tyrosine phosphatase gene C1858T allele confers risk for rheumatoid arthritis in Hungarian subjects. Rheumatol Int. 2009;29(7):793–796.19034456Stahl EA, Raychaudhuri S, Remmers EF, Xie G, Eyre S, Thomson BP, et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat Genet. 2010;42(6):508–514.PMC424384020453842Goeb V, Dieude P, Daveau R, Thomas-L'otellier M, Jouen F, Hau F, et al. Contribution of PTPN22 1858T, TNFRII 196R and HLA-shared epitope alleles with rheumatoid factor and anticitrullinated protein antibodies to very early rheumatoid arthritis diagnosis. Rheumatology (Oxford) 2008;47(8):1208–1212.18535030Cha S, Choi CB, Han TU, Kang CP, Kang C, Bae SC. Association of anti-cyclic citrullinated peptide antibody levels with PADI4 haplotypes in early rheumatoid arthritis and with shared epitope alleles in very late rheumatoid arthritis. Arthritis Rheum. 2007;56(5):1454–1463.17469103Poor G, Nagy ZB, Schmidt Z, Brozik M, Meretey K, Gergely P., Jr Genetic background of anticyclic citrullinated peptide autoantibody production in Hungarian patients with rheumatoid arthritis. Ann N Y Acad Sci. 2007;1110:23–32.17911417Suzuki A, Yamada R, Chang X, Tokuhiro S, Sawada T, Suzuki M, et al. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet. 2003;34(4):395–402.12833157van der Linden MP, Feitsma AL, le Cessie S, Kern M, Olsson LM, Raychaudhuri S, et al. Association of a single-nucleotide polymorphism in CD40 with the rate of joint destruction in rheumatoid arthritis. Arthritis Rheum. 2009;60(8):2242–2247.PMC312105319644859Liang YL, Wu H, Shen X, Li PQ, Yang XQ, Liang L, et al. Association of STAT4 rs7574865 polymorphism with autoimmune diseases: a meta-analysis. Mol Biol Rep. 201222714917Plenge RM, Seielstad M, Padyukov L, Lee AT, Remmers EF, Ding B, et al. TRAF1-C5 as a risk locus for rheumatoid arthritis—a genomewide study. N Engl J Med. 2007;357(12):1199–1209.PMC263686717804836Lee YH, Ji JD, Song GG. Associations between FCGR3A polymorphisms and susceptibility to rheumatoid arthritis: a meta-analysis. J Rheumatol. 2008;35(11):2129–2135.18843786Kochi Y, Okada Y, Suzuki A, Ikari K, Terao C, Takahashi A, et al. A regulatory variant in CCR6 is associated with rheumatoid arthritis susceptibility. Nat Genet. 2010;42(6):515–519.20453841Szekanecz Z, Koch AE, Tak PP. Chemokine and chemokine receptor blockade in arthritis, a prototype of immune-mediated inflammatory diseases. Neth J Med. 2011;69(9):356–366.21978977Ding B, Padyukov L, Lundstrom E, Seielstad M, Plenge RM, Oksenberg JR, et al. Different patterns of associations with anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis in the extended major histocompatibility complex region. Arthritis Rheum. 2009;60(1):30–38.PMC287431919116921Verpoort KN, Cheung K, Ioan-Facsinay A, van der Helm-van Mil AH, de Vries-Bouwstra JK, Allaart CF, et al. Fine specificity of the anti-citrullinated protein antibody response is influenced by the shared epitope alleles. Arthritis Rheum. 2007;56(12):3949–3952.18050209Daha NA, Toes RE. Rheumatoid arthritis: Are ACPA-positive and ACPA-negative RA the same disease? Nat Rev Rheumatol. 2011;7(4):202–203.21455249Pedersen M, Jacobsen S, Klarlund M, Pedersen BV, Wiik A, Wohlfahrt J, et al. Environmental risk factors differ between rheumatoid arthritis with and without auto-antibodies against cyclic citrullinated peptides. Arthritis Res Ther. 2006;8(4):R133.PMC177938616872514Perricone C, Ceccarelli F, Valesini G. An overview on the genetic of rheumatoid arthritis: a never-ending story. Autoimmun Rev. 10(10):599–608.21545847Ruyssen-Witrand A, Rouanet S, Combe B, Dougados M, Le Loet X, Sibilia J, et al. Fcgamma receptor type IIIA polymorphism influences treatment outcomes in patients with rheumatoid arthritis treated with rituximab. Ann Rheum Dis. 2012;71(6):875–877.22368231van Ede AE, Laan RF, Blom HJ, Huizinga TW, Haagsma CJ, Giesendorf BA, et al. The C677T mutation in the methyl-enetetrahydrofolate reductase gene: a genetic risk factor for methotrexate-related elevation of liver enzymes in rheumatoid arthritis patients. Arthritis Rheum. 2001;44(11):2525–2530.11710708Berkun Y, Levartovsky D, Rubinow A, Orbach H, Aamar S, Grenader T, et al. Methotrexate related adverse effects in patients with rheumatoid arthritis are associated with the A1298C polymorphism of the MTHFR gene. Ann Rheum Dis. 2004;63(10):1227–1231.PMC175475615361376Dervieux T, Kremer J, Lein DO, Capps R, Barham R, Meyer G, et al. Contribution of common polymorphisms in reduced folate carrier and gamma-glutamylhydrolase to methotrexate polyglutamate levels in patients with rheumatoid arthritis. Pharmacogenetics. 2004;14(11):733–739.15564880Pawlik A, Wrzesniewska J, Fiedorowicz-Fabrycy I, Gawronska-Szklarz B. The MDR1 3435 polymorphism in patients with rheumatoid arthritis. Int J Clin Pharmacol Ther. 2004;42(9):496–503.15487808Tolusso B, Pietrapertosa D, Morelli A, De Santis M, Gremese E, Farina G, et al. IL-1B and IL-1RN gene polymorphisms in rheumatoid arthritis: relationship with protein plasma levels and response to therapy. Pharmacogenomics. 2006;7(5):683–695.16886894van Vollenhoven RF. Switching between anti-tumour necrosis factors: trying to get a handle on a complex issue. Ann Rheum Dis. 2007;66(7):849–851.PMC195511617576784
232512142013081220211021
1740-253020122012Clinical & developmental immunologyClin Dev ImmunolNon-MHC risk alleles in rheumatoid arthritis and in the syntenic chromosome regions of corresponding animal models.28475128475128475110.1155/2012/284751Rheumatoid arthritis (RA) is a polygenic autoimmune disease primarily affecting the synovial joints. Numerous animal models show similarities to RA in humans; some of them not only mimic the clinical phenotypes but also demonstrate the involvement of homologous genomic regions in RA. This paper compares corresponding non-MHC genomic regions identified in rodent and human genome-wide association studies (GWAS). To date, over 30 non-MHC RA-associated loci have been identified in humans, and over 100 arthritis-associated loci have been identified in rodent models of RA. The genomic regions associated with the disease are designated by the name(s) of the gene having the most frequent and consistent RA-associated SNPs or a function suggesting their involvement in inflammatory or autoimmune processes. Animal studies on rats and mice preferentially have used single sequence length polymorphism (SSLP) markers to identify disease-associated qualitative and quantitative trait loci (QTLs) in the genome of F2 hybrids of arthritis-susceptible and arthritis-resistant rodent strains. Mouse GWAS appear to be far ahead of rat studies, and significantly more mouse QTLs correspond to human RA risk alleles.BesenyeiTimeaTDepartment of Rheumatology, Faculty of Medicine, Medical and Health Science Centre, University of Debrecen, Debrecen 4012, Hungary.KadarAndrasATryniszewskaBeataBKurkoJuliaJRauchTibor ATAGlantTibor TTTMikeczKatalinKSzekaneczZoltanZengR01 AR059356ARNIAMS NIH HHSUnited StatesAR045652ARNIAMS NIH HHSUnited StatesAR040310ARNIAMS NIH HHSUnited StatesR01 AR040310ARNIAMS NIH HHSUnited StatesAR059356ARNIAMS NIH HHSUnited StatesR01 AR062991ARNIAMS NIH HHSUnited StatesP01 AR045652ARNIAMS NIH HHSUnited StatesJournal ArticleResearch Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov'tReview20121206
EgyptClin Dev Immunol1011836921740-2522IMAllelesAnimalsArthritis, RheumatoidgeneticsimmunologyChromosomesgeneticsimmunologyDisease Models, AnimalGenomeGenome-Wide Association StudymethodsHumansMajor Histocompatibility ComplexgeneticsimmunologyQuantitative Trait Locigeneticsimmunology
201261220128132012930201212206020121220602013813602012126ppublish23251214PMC352148410.1155/2012/284751Kurko J, Besenyei T, Laki J, et al. Genetics of rheumatoid arthritis. Clinical Reviews in Allergy & Immunology. In press.PMC365513823288628Berg WBVD. Lessons from animal models of arthritis over the past decade. Arthritis Research and Therapy. 2009;11(5, article 250)PMC278728219849822Ahlqvist E, Hultqvist M, Holmdahl R. The value of animal models in predicting genetic susceptibility to complex diseases such as rheumatoid arthritis. Arthritis Research and Therapy. 2009;11(3, article 226)PMC271409419490601Bevaart L, Vervoordeldonk MJ, Tak PP. Evaluation of therapeutic targets in animal models of arthritis: how does it relate to rheumatoid arthritis? Arthritis and Rheumatism. 2010;62(8):2192–2205.20506322Cai C, La Cava A. Mimicking self-antigens with synthetic peptides in systemic autoimmune rheumatic diseases. Current Clinical Pharmacology. 2009;4(2):142–147.19442079Glant TT, Mikecz K, Arzoumanian A, Poole AR. Proteoglycan-induced arthritis in BALB/c mice. Clinical features and histopathology. Arthritis and Rheumatism. 1987;30(2):201–212.3827960Mikecz K, Glant TT, Poole AR. Immunity to cartilage proteoglycans in BALB/c mice with progressive polyarthritis and ankylosing spondylitis induced by injection of human cartilage proteoglycan. Arthritis and Rheumatism. 1987;30(3):306–318.3566822Trentham DE, Townes AS, Kang AH. Autoimmunity to type II collagen: an experimental model of arthritis. Journal of Experimental Medicine. 1977;146(3):857–868.PMC2180804894190Courtenay JS, Dallman MJ, Dayan AD. Immunisation against heterologous type II collagen induces arthritis in mice. Nature. 1980;283(5748):666–668.6153460Glant TT, Finnegan A, Mikecz K. Proteoglycan-induced arthritis: immune regulation, cellular mechanisms, and genetics. Critical Reviews in Immunology. 2003;23(3):199–250.14584879Popovic M, Ahlqvist E, Rockenbauer E, Bockermann R, Holmdahl R. Identification of new loci controlling collagen-induced arthritis in mouse using a partial advanced intercross and congenic strains. Scandinavian Journal of Immunology. 2008;68(4):405–413.18782270Zanelli E, Breedveld FC, De Vries RRP. HLA class II association with rheumatoid arthritis: facts and interpretations. Human Immunology. 2000;61(12):1254–1261.11163080Weyand CM, Goronzy JJ. Association of MHC and rheumatoid arthritis HLA polymorphisms in phenotypic variants of rheumatoid arthritis. Arthritis Research. 2000;2(3):212–216.PMC13000511094432Plenge RM. Rheumatoid arthritis genetics: 2009 update. Current Rheumatology Reports. 2009;11(5):351–356.19772830Bax M, Van Heemst J, Huizinga TWJ, Toes REM. Genetics of rheumatoid arthritis: what have we learned? Immunogenetics. 2011;63(8):459–466.PMC313238021556860Perricone C, Ceccarelli F, Valesini G. An overview on the genetic of rheumatoid arthritis: a never-ending story. Autoimmunity Reviews. 2011;10(10):599–608.21545847Craddock N, Hurles ME, Cardin N, et al. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature. 2010;464(7289):713–720.PMC289233920360734Cong F, Spencer S, Côté JF, et al. Cytoskeletal protein PSTPIP1 directs the PEST-type protein tyrosine phosphatase to the c-Abl kinase to mediate Abl dephosphorylation. Molecular Cell. 2000;6(6):1413–1423.11163214Stahl EA, Raychaudhuri S, Remmers EF, et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nature Genetics. 2010;42(6):508–514.PMC424384020453842de Vries R. Genetics of rheumatoid arthritis: time for a change! Current Opinion in Rheumatology. 2011;23(3):227–232.21427575Velaga MR, Wilson V, Jennings CE, et al. The codon 620 tryptophan allele of the Lymphoid Tyrosine Phosphatase (LYP) gene is a major determinant of Graves’ disease. Journal of Clinical Endocrinology and Metabolism. 2004;89(11):5862–5865.15531553Smyth D, Cooper JD, Collins JE, et al. Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes. 2004;53(11):3020–3023.15504986Criswell LA, Pfeiffer KA, Lum RF, et al. Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. American Journal of Human Genetics. 2005;76(4):561–571.PMC119929415719322Hinks A, Barton A, John S, et al. Association between the PTPN22 gene and rheumatoid arthritis and juvenile idiopathic arthritis in a UK population: further support that PTPN22 is an autoimmunity gene. Arthritis and Rheumatism. 2005;52(6):1694–1699.15934099Viken MK, Amundsen SS, Kvien TK, et al. Association analysis of the 1858C > T polymorphism in the PTPN22 gene in juvenile idiopathic arthritis and other autoimmune diseases. Genes and Immunity. 2005;6(3):271–273.15759012De Jager PL, Sawcer S, Waliszewska A, et al. Evaluating the role of the 620W allele of protein tyrosine phosphatase PTPN22 in Crohn’s disease and multiple sclerosis. European Journal of Human Genetics. 2006;14(3):317–321.16391555Vandiedonck C, Capdevielle C, Giraud M, et al. Association of the PTPN22∗R620W polymorphism with autoimmune myasthenia gravis. Annals of Neurology. 2006;59(2):404–407.16437561Centola M, Szekanecz Z, Kiss E, et al. Gene expression profiles of systemic lupus erythematosus and rheumatoid arthritis. Expert Review of Clinical Immunology. 2007;3(5):797–806.20477029Coenen MJH, Gregersen PK. Rheumatoid arthritis: a view of the current genetic landscape. Genes and Immunity. 2009;10(2):101–111.PMC273078018987647Brand DD, Kang AH, Rosloniec EF. Immunopathogenesis of collagen arthritis. Springer Seminars in Immunopathology. 2003;25(1):3–18.12904888Hanyecz A, Berlo SE, Szántó S, Broeren CPM, Mikecz K, Glant TT. Achievement of a synergistic adjuvant effect on arthritis induction by activation of innate immunity and forcing the immune response toward the Th1 phenotype. Arthritis and Rheumatism. 2004;50(5):1665–1676.15146438Kouskoff V, Korganow AS, Duchatelle V, Degott C, Benoist C, Mathis D. Organ-specific disease provoked by systemic autoimmunity. Cell. 1996;87(5):811–822.8945509Korganow AS, Hong J, Mangialaio S, et al. From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins. Immunity. 1999;10(4):451–461.10229188Mangialaio S, Ji H, Korganow AS, et al. The arthritogenic T cell receptor and its ligand in a model of spontaneous arthritis. Arthritis and Rheumatism. 1999;42(12):2517–2523.10615996Matsumoto I, Maccioni M, Lee DM, et al. How antibodies to a ubiquitous cytoplasmic enzyme may provoke joint-specific autoimmune disease. Nature Immunology. 2002;3(4):360–365.11896391Kassahn D, Kolb C, Solomon S, et al. Few human autoimmune sera detect GPI (multiple letters) [2] Nature Immunology. 2002;3(5):411–413.11976712Kassahn D, Kolb C, Solomon S, et al. Few human autoimmune sera detect GPI (multiple letters) Nature Immunology. 2002;3(5):411–413.11976712Matsumoto I, Lee DM, Goldbach-Mansky R, et al. Low prevalence of antibodies to glucose-6-phosphate isomerase in patients with rheumatoid arthritis and a spectrum of other chronic autoimmune disorders. Arthritis and Rheumatism. 2003;48(4):944–954.12687536Johnsen AK, Valdar W, Golden L, et al. A genome-wide and species-wide dissection of the genetics of arthritis severity in hetrogeneous stock mice. Arthritis and Rheumatism. 2011;63(9):2630–2640.PMC337164521560115Sakaguchi N, Takahashi T, Hata H, et al. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature. 2003;426(6965):454–460.14647385Horai R, Saijo S, Tanioka H, et al. Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin I receptor antagonist-deficient mice. Journal of Experimental Medicine. 2000;191(2):313–320.PMC219576510637275Nakae S, Saijo S, Horai R, Sudo K, Mori S, Iwakura Y. IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(10):5986–5990.PMC15631312721360Keffer J, Probert L, Cazlaris H, et al. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO Journal. 1991;10(13):4025–4031.PMC4531501721867Solomon S, Rajasekaran N, Jeisy-Walder E, Snapper SB, Illges H. A crucial role for macrophages in the pathology of K/B × N serum-induced arthritis. European Journal of Immunology. 2005;35(10):3064–3073.16180250Stuart JM, Dixon FJ. Serum transfer of collagen-induced arthritis in mice. Journal of Experimental Medicine. 1983;158(2):378–392.PMC21873346886622Englert ME, Ferguson KM, Suarez CR. Passive transfer of collagen arthritis: heterogeneity of anti-collagen IgG. Cellular Immunology. 1986;101(2):373–379.2428515Holmdahl R, Klareskog L, Rubin K. T lymphocytes in collagen II-induced arthritis in mice. Characterization of arthritogenic collagen II-specific T-cell lines and clones. Scandinavian Journal of Immunology. 1985;22(3):295–306.2413528Tarjanyi O, Boldizsar F, Nemeth P, Mikecz K, Glant TT. Age-related changes in arthritis susceptibility and severity in a murine model of rheumatoid arthritis. Immunity and Ageing. 2009;6, article 8PMC270416819519881Glant TT, Radacs M, Nagyeri G, et al. Proteoglycan-induced arthritis and recombinant human proteoglycan aggrecan G1 domain-induced arthritis in BALB/c mice resembling two subtypes of rheumatoid arthritis. Arthritis and Rheumatism. 2011;63(5):1312–1321.PMC308693321305522Zhang Y, Guerassimov A, Leroux JY, et al. Induction of arthritis in BALB/c mice by cartilage link protein: involvement of distinct regions recognized by T and B lymphocytes. American Journal of Pathology. 1998;153(4):1283–1291.PMC18530509777960Verheijden GFM, Rijnders AWM, Bos E, et al. Human cartilage glycoprotein-39 as a candidate autoantigen in rheumatoid arthritis. Arthritis and Rheumatism. 1997;40(6):1115–1125.9182922Bárdos T, Zhang J, Mikecz K, David CS, Glant TT. Mice lacking endogenous major histocompatibility complex class II develop arthritis resembling psoriatic arthritis at an advanced age. Arthritis and Rheumatism. 2002;46(9):2465–2475.12355495Berlo SE, Van Kooten PJ, Ten Brink CB, et al. Naive transgenic T cells expressing cartilage proteoglycan-specific TCR induce arthritis upon in vivo activation. Journal of Autoimmunity. 2005;25(3):172–180.16257179Berlo SE, Guichelaar T, Ten Brink CB, et al. Increased arthritis susceptibility in cartilage proteoglycan-specific T cell receptor-transgenic mice. Arthritis and Rheumatism. 2006;54(8):2423–2433.16869010Boldizsar F, Kis-Toth K, Tarjanyi O, et al. Impaired activation-induced cell death promotes spontaneous arthritis in antigen (cartilage proteoglycan)-specific T cell receptor-transgenic mice. Arthritis and Rheumatism. 2010;62(10):2984–2994.PMC295204420564001Jensen JR, Peters LC, Borrego A, et al. Involvement of antibody production quantitative trait loci in the susceptibility to pristane-induced arthritis in the mouse. Genes and Immunity. 2006;7(1):44–50.16435023Yu X, Bauer K, Koczan D, Thiesen HJ, Ibrahim SM. Combining global genome and transcriptome approaches to identify the candidate genes of small-effect quantitative trait loci in collagen-induced arthritis. Arthritis Research and Therapy. 2007;9, article R3PMC186006117244351Yu X, Teng H, Marques A, Ashgari F, Ibrahim SM. High resolution mapping of Cia3: a common arthritis quantitative trait loci in different species. Journal of Immunology. 2009;182(5):3016–3023.19234197Poole AR. Cartilage in health and disease. In: McCarty DJ, Koopman WJ, editors. Arthritis and Allied Conditions. A Textbook of Rheumatology. Philadelphia, Pa, USA: Lea & Febiger; 1993. pp. 279–333.Czipri M, Otto JM, Cs-Szabó G, et al. Genetic rescue of chondrodysplasia and the perinatal lethal effect of cartilage link protein deficiency. Journal of Biological Chemistry. 2003;278(40):39214–39223.12732630Singer II, Kawka DW, Bayne EK, et al. VDIPEN, a metalloproteinase-generated neoepitope, is induced and immunolocalized in articular cartilage during inflammatory arthritis. Journal of Clinical Investigation. 1995;95(5):2178–2186.PMC2958227537757Bizzaro N. Antibodies to citrullinated peptides: a significant step forward in the early diagnosis of rheumatoid arthritis. Clinical Chemistry and Laboratory Medicine. 2007;45(2):150–157.17311500Simon M, Girbal E, Sebbag M, et al. The cytokeratin filament-aggregating protein filaggrin is the target of the so-called ’antikeratin antibodies,’ autoantibodies specific for rheumatoid arthritis. Journal of Clinical Investigation. 1993;92(3):1387–1393.PMC2882817690781Girbal-Neuhauser E, Durieux JJ, Arnaud M, et al. The epitopes targeted by the rheumatoid arthritis-associated antifilaggrin autoantibodies are posttranslationally generated on various sites of (pro)filaggrin by deimination of arginine residues. Journal of Immunology. 1999;162(1):585–594.9886436Poole AR, Glant TT, Mikecz K. Autoimmunity to cartilage collagen and proteoglycan and the development of chronic inflammatory arthritis. In: Glaurer AM, editor. The Control of Tissue Damage. Amsterdam, The Netherlands: Elsevier Publishers (Biomedical Division); 1988. pp. 55–65.Glant TT, Mikecz K, Thonar EJMA, Kuettner KE. Immune responses to cartilage proteoglycans in inflammatory animal models and human diseases. In: Woessner JF, Howell DS, editors. Cartilage Degradation: Basic and Clinical Aspects. New York, NY, USA: Marcel Dekker; 1992. pp. 435–473.Glant TT, Fulop C, Mikecz K, Buzas E, Molnar G, Erhardt P. Proteoglycan-specific autoreactive antibodies and T-lymphocytes in experimental arthritis and human rheumatoid joint diseases. Biochemical Society Transactions. 1990;18(5):796–799.2083679Herman JH, Wiltse DW, Dennis MV. Immunopathologic significance of cartilage antigenic components in rheumatoid arthritis. Arthritis and Rheumatism. 1973;16(3):287–297.4122517Glant T, Csongor J, Szucs T. Immunopathologic role of proteoglycan antigens in rheumatoid joint disease. Scandinavian Journal of Immunology. 1980;11(3):247–252.9537052Golds EE, Stephen IBM, Esdaile JM. Lymphocyte transformation to connective tissue antigens in adult and juvenile rheumatoid arthritis, osteoarthritis, ankylosing spondylitis, systemic lupus erythematosus, and a nonarthritic control population. Cellular Immunology. 1983;82(1):196–209.6640674Karopoulos C, Rowley MJ, Ilic MZ, Handley CJ. Presence of antibodies to native G1 domain of aggrecan core protein in synovial fluids from patients with various joint diseases. Arthritis and Rheumatism. 1996;39(12):1990–1997.8961903Boots AMH, Verheijden GFM, Schöningh R, et al. Selection of self-reactive peptides within human aggrecan by use of a HLA-DRB1*0401 peptide binding motif. Journal of Autoimmunity. 1997;10(6):569–578.9451596Guerassimov A, Zhang Y, Banerjee S, et al. Autoimmunity to cartilage link protein in patients with rheumatoid arthritis and ankylosing spondylitis. Journal of Rheumatology. 1998;25(8):1480–1484.9712087Guerassimov A, Zhang YP, Banerjee S, et al. Cellular immunity to the G1 domain of cartilage proteoglycan aggrecan is enhanced in patients with rheumatoid arthritis but only after removal of keratan sulfate. Arthritis and Rheumatism. 1998;41(6):1019–1025.9627011Li NL, Zhang DQ, Zhou KY, et al. Isolation and characteristics of autoreactive T cells specific to aggrecan G1 domain from rheumatoid arthritis patients. Cell Research. 2000;10(1):39–49.10765982Zou J, Zhang Y, Thiel A, et al. Predominant cellular immune response to the cartilage autoantigenic G1 aggrecan in ankylosing spondylitis and rheumatoid arthritis. Rheumatology. 2003;42(7):846–855.12730543De Jong H, Berlo SE, Hombrink P, et al. Cartilage proteoglycan aggrecan epitopes induce proinflammatory autoreactive T-cell responses in rheumatoid arthritis and osteoarthritis. Annals of the Rheumatic Diseases. 2010;69(1):255–262.19213744Von Delwig A, Locke J, Robinson JH, Ng WF. Response of Th17 cells to a citrullinated arthritogenic aggrecan peptide in patients with rheumatoid arthritis. Arthritis and Rheumatism. 2010;62(1):143–149.20039419Law SC, Street S, Yu CH, et al. T cell autoreactivity to citrullinated autoantigenic peptides in rheumatoid arthritis patients carrying HLA-DRB1 shared epitope alleles. Arthritis Research and Therapy. 2012;14(3):p. R118.PMC344649922594821Buzás EI, Hanyecz A, Murad Y, et al. Differential recognition of altered peptide ligands distinguishes two functionally discordant (arthritogenic and nonarthritogenic) autoreactive T cell hybridoma clones. Journal of Immunology. 2003;171(6):3025–3033.12960328Buzás EI, Végvári A, Murad YM, Finnegan A, Mikecz K, Glant TT. T-cell recognition of differentially tolerated epitopes of cartilage proteoglycan aggrecan in arthritis. Cellular Immunology. 2005;235(2):98–108.16185673Glant TT, Adarichev VA, Nesterovitch AB, et al. Disease-associated qualitative and quantitative trait loci in proteoglycan-induced arthritis and collagen-induced arthritis. American Journal of the Medical Sciences. 2004;327(4):188–195.15084914Otto JM, Cs-Szabó G, Gallagher J, et al. Identification of multiple loci linked to inflammation and autoantibody production by a genome scan of a murine model of rheumatoid arthritis. Arthritis and Rheumatism. 1999;42(12):2524–2531.10615997Glant TT, Adarichev VA, Boldizsar F, et al. Disease-promoting and -protective genomic loci on mouse chromosomes 3 and 19 control the incidence and severity of autoimmune arthritis. Gene Immunity. 2012;13(4):336–345.PMC352497222402741Adarichev VA, Bárdos T, Christodoulou S, Phillips MT, Mikecz K, Glant TT. Major histocompatibility complex controls susceptibility and dominant inheritance, but not the severity of the disease in mouse models of rheumatoid arthritis. Immunogenetics. 2002;54(3):184–192.12073147Adarichev VA, Valdez JC, Bárdos T, Finnegan A, Mikecz K, Glant TT. Combined autoimmune models of arthritis reveal shared and independent qualitative (binary) and quantitative trait loci. Journal of Immunology. 2003;170(5):2283–2292.12594249Adarichev VA, Vegvari A, Szabo Z, Kis-Toth K, Mikecz K, Glant TT. Congenic strains displaying similar clinical phenotype of arthritis represent different immunologic models of inflammation. Genes and Immunity. 2008;9(7):591–601.PMC395137418650834Plenge RM, Seielstad M, Padyukov L, et al. TRAF1-C5 as a risk locus for rheumatoid arthritis - A genomewide study. The New England Journal of Medicine. 2007;357(12):1199–1209.PMC263686717804836Etzel CJ, Chen WV, Shepard N, et al. Genome-wide meta-analysis for rheumatoid arthritis. Human Genetics. 2006;119(6):634–641.16612613Barton A, Thomson W, Ke X, et al. Re-evaluation of putative rheumatoid arthritis susceptibility genes in the post-genome wide association study era and hypothesis of a key pathway underlying susceptibility. Human Molecular Genetics. 2008;17(15):2274–2279.PMC246579918434327Eleftherohorinou H, Wright V, Hoggart C, et al. Pathway analysis of GWAS provides new insights into genetic susceptibility to 3 inflammatory diseases. PloS One. 2009;4(11, article e8068)PMC277899519956648Glant TT, Szántó S, Vegvari A, et al. Two loci on chromosome 15 control experimentally induced arthritis through the differential regulation of IL-6 and lymphocyte proliferation. Journal of Immunology. 2008;181(2):1307–1314.18606685Ahlqvist E, Bockermann R, Holmdahl R. Fragmentation of two quantitative trait loci controlling collagen-induced arthritis reveals a new set of interacting subloci. Journal of Immunology. 2007;178(5):3084–3090.17312155Liljander M, Sällström MA, Anderson S, et al. Identification of collagen-induced arthritis loci in aged multiparous female mice. Arthritis Research and Therapy. 2006;8(2, article R45)PMC152660416507151Bauer K, Yu X, Wernhoff P, Koczan D, Thiesen HJ, Ibrahim SM. Identification of new quantitative trait loci in mice with collagen-induced arthritis. Arthritis and Rheumatism. 2004;50(11):3721–3728.15529344Yu X, Bauer K, Wernhoff P, et al. Fine mapping of collagen-induced arthritis quantitative trait loci in an advanced intercross line. Journal of Immunology. 2006;177(10):7042–7049.17082620Johannesson M, Olsson LM, Lindqvist AKB, et al. Gene expression profiling of arthritis using a QTL chip reveals a complex gene regulation of the Cia5 region in mice. Genes and Immunity. 2005;6(7):575–583.16015370Lindvall T, Karlsson J, Holmdahl R, et al. Dissection of a locus on mouse chromosome 5 reveals arthritis promoting and inhibitory genes. Arthritis Research and Therapy. 2009;11(1, article R10)PMC268824120527086Ibrahim SM, Koczan D, Thiesen HJ. Gene-expression profile of collagen-induced arthritis. Journal of Autoimmunity. 2002;18(2):159–167.11908948Gulko PS, Kawahito Y, Remmers EF, et al. Identification of a new non-major histocompatibility complex genetic locus on chromosome 2 that controls disease severity in collagen-induced arthritis in rats. Arthritis and Rheumatism. 1998;41(12):2122–2131.9870869Kawahito Y, Remmers EF, Wilder RL, et al. A genetic linkage map of rat chromosome 20 derived from five F2 crosses. Immunogenetics. 1998;48(5):335–338.9745010Shepard JS, Remmers EF, Chen S, et al. A genetic linkage map of rat Chromosome 15 derived from five F2 crosses. Mammalian Genome. 1999;10(2):186–188.9922401Joe B, Remmers EF, Dobbins DE, et al. Genetic dissection of collagen-induced arthritis in chromosome 10 quantitative trait locus speed congenic rats: evidence for more than one regulatory locus and sex influences. Immunogenetics. 2000;51(11):930–944.11003387Wester L, Olofsson P, Ibrahim SM, Holmdahl R. Chronicity of pristane-induced arthritis in rats is controlled by genes on chromosome 14. Journal of Autoimmunity. 2003;21(4):305–313.14624754Wester L, Koczan D, Holmberg J, et al. Differential gene expression in pristane-induced arthritis susceptible DA versus resistant E3 rats. Arthritis Research & Therapy. 2003;5(6):R361–R372.PMC33342214680511Adarichev VA, Nesterovitch AB, Bárdos T, et al. Sex effect on clinical and immunologic quantitative trait loci in a murine model of rheumatoid arthritis. Arthritis and Rheumatism. 2003;48(6):1708–1720.12794840Otto JM, Chandrasekeran R, Vermes C, et al. A genome scan using a novel genetic cross identifies new susceptibility loci and traits in a mouse model of rheumatoid arthritis. Journal of Immunology. 2000;165(9):5278–5286.11046062Johannesson M, Karlsson J, Wernhoff P, et al. Identification of epistasis through a partial advanced intercross reveals three arthritis loci within the Cia5 QTL in mice. Genes and Immunity. 2005;6(3):175–185.15716976Firneisz G, Zehavi I, Vermes C, Hanyecz A, Frieman JA, Glant TT. Identification and quantification of disease-related gene clusters. Bioinformatics. 2003;19(14):1781–1786.14512349Yang HT, Jirholt J, Svensson L, et al. Identification of genes controlling collagen-induced arthritis in mice: striking homology with susceptibility loci previously identified in the rat. Journal of Immunology. 1999;163(5):2916–2921.10453039Van Houten N, Blake SF. Direct measurement of anergy of antigen-specific T cells following oral tolerance induction. Journal of Immunology. 1996;157(4):1337–1341.8759712Studelska DR, Mandik-Nayak L, Zhou X, et al. High affinity glycosaminoglycan and autoantigen interaction explains joint specificity in a mouse model of rheumatoid arthritis. Journal of Biological Chemistry. 2009;284(4):2354–2362.PMC262909818948258Hughes LB, Reynolds RJ, Brown EE, et al. Most common single-nucleotide polymorphisms associated with rheumatoid arthritis in persons of European ancestry confer risk of rheumatoid arthritis in African Americans. Arthritis and Rheumatism. 2010;62(12):3547–3553.PMC303062221120996Cui J, Saevarsdottir S, Thomson B, et al. Rheumatoid arthritis risk allele PTPRC is also associated with response to anti-tumor necrosis factor α therapy. Arthritis and Rheumatism. 2010;62(7):1849–1861.PMC365247620309874Thompson SD, Sudman M, Ramos PS, et al. The susceptibility loci juvenile idiopathic arthritis shares with other autoimmune diseases extend to PTPN2, COG6, and ANGPT1. Arthritis and Rheumatism. 2010;62(11):3265–3276.PMC297076420722033Morgan AW, Robinson JI, Conaghan PG, et al. Evaluation of the rheumatoid arthritis susceptibility loci HLA-DRB1, PTPN22, OLIG3/TNFAIP3, STAT4 and TRAF1/C5 in an inception cohort. Arthritis Research and Therapy. 2010;12(2, article R57)PMC288820720353580Freudenberg J, Lee HS, Han BG, et al. Genome-Wide Association Study of Rheumatoid Arthritis in Koreans: population-specific loci as well as overlap with European Susceptibility Loci. Arthritis and Rheumatism. 2011;63(4):884–893.21452313Plenge RM, Cotsapas C, Davies L, et al. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nature Genetics. 2007;39(12):1477–1482.PMC265274417982456Feldmann M, Brennan FM, Maini RN. Role of cytokines in rheumatoid arthritis. Annual Review of Immunology. 1996;14:397–440.8717520Menard L, Saadoun D, Isnardi I, et al. The PTPN22 allele encoding an R620W variant interferes with the removal of developing autoreactive B cells in humans. The Journal of Clinical Investigation. 2011;121(9):3635–3644.PMC316395321804190Jirholt J, Cook A, Emahazion T, et al. Genetic linkage analysis of collagen-induced arthritis in the mouse. European Journal of Immunology. 1998;28(10):3321–3328.9808201Sundvall M, Jirholt J, Yang HT, et al. Identification of murine loci associated with susceptibility to chronic experimental autoimmune encephalomyelitis. Nature Genetics. 1995;10(3):313–317.7545492Karlsson J, Johannesson M, Lindvall T, et al. Genetic interactions in Eae2 control collagen-induced arthritis and the CD4+/CD8+ T cell ratio. Journal of Immunology. 2005;174(1):533–541.15611280Meng HC, Griffiths MM, Remmers EF, et al. Identification of two novel female-specific non-major histocompatibility complex loci regulating collagen-induced arthritis severity and chronicity, and evidence of epistasis. Arthritis and Rheumatism. 2004;50(8):2695–2705.15334486Brenner M, Meng HC, Yarlett NC, et al. The non-major histocompatibility complex quantitative trait locus Cia10 contains a major arthritis gene and regulates disease severity, pannus formation, and joint damage. Arthritis and Rheumatism. 2005;52(1):322–332.15641042Xu W, Lan H, Hu P, et al. Evidence of linkage to chromosome 1 for early age of onset of rheumatoid arthritis and HLA marker DRB1 genotype in NARAC data. BMC Proceedings. 2007;1(supplement 1):p. S78.PMC236750918466580Liu C, Batliwalla F, Li W, et al. Genome-wide association scan identifies candidate polymorphisms associated with differential response to anti-TNF treatment in rheumatoid arthritis. Molecular Medicine. 2008;14(9-10):575–581.PMC227614218615156Gharaee-Kermani M, Denholm EM, Phan SH. Costimulation of fibroblast collagen and transforming growth factor β1 gene expression by monocyte chemoattractant protein-1 via specific receptors. Journal of Biological Chemistry. 1996;271(30):17779–17784.8663511van der Helm-van Mil AHM, Huizinga TWJ. Advances in the genetics of rheumatoid arthritis point to subclassification into distinct disease subsets. Arthritis Research and Therapy. 2008;10(2, article 205)PMC245377518394179Bowes J, Barton A. Recent advances in the genetics of RA susceptibility. Rheumatology. 2008;47(4):399–402.18263596Choi SJ, Rho YH, Ji JD, Song GG, Lee YH. Genome scan meta-analysis of rheumatoid arthritis. Rheumatology. 2006;45(2):166–170.16278286Morgan AW, Barrett JH, Griffiths B, et al. Analysis of Fcgamma receptor haplotypes in rheumatoid arthritis: FCGR3A remains a major susceptibility gene at this locus, with an additional contribution from FCGR3B. Arthritis Research & Therapy. 2006;8(1):p. R5.PMC152656916356189Kochi Y, Yamada R, Suzuki A, et al. A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities. Nature Genetics. 2005;37(5):478–485.PMC136294915838509Licatalosi DD, Mele A, Fak JJ, et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature. 2008;456(7221):464–469.PMC259729418978773Chi SW, Zang JB, Mele A, Darnell RB. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature. 2009;460(7254):479–486.PMC273394019536157Malterer G, Dölken L, Haas J. The miRNA-targetome of KSHV and EBV in human B-cells. RNA Biology. 2011;8(1):30–34.21301209Wen J, Parker BJ, Jacobsen A, Krogh A. MicroRNA transfection and AGO-bound CLIP-seq data sets reveal distinct determinants of miRNA action. RNA. 2011;17(5):820–834.PMC307873221389147Zhang C, Darnell RB. Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nature Biotechnology. 2011;29(7):607–614.PMC340042921633356
224922172013011620220321
1529-013164102012OctArthritis and rheumatismArthritis RheumSuppression of dendritic cell maturation and T cell proliferation by synovial fluid myeloid cells from mice with autoimmune arthritis.317931883179-8810.1002/art.34494To determine whether myeloid cells (such as granulocytes) present in the synovial fluid (SF) of arthritic joints have an impact on adaptive immunity. Specifically, we investigated the effects of SF cells harvested from the joints of mice with proteoglycan-induced arthritis (PGIA), on dendritic cell (DC) maturation and antigen-specific T cell proliferation.We monitored DC maturation (MHCII and CD86 expression) by flow cytometry upon coculture of DCs with SF cells or spleen myeloid cells from mice with PGIA. The effects of these myeloid cells on T cell proliferation were studied using T cells purified from PG-specific T cell receptor (TCR)-transgenic (Tg) mice. Phenotype analysis of myeloid cells was performed by immunostaining, reverse transcription-polymerase chain reaction, Western blotting, and biochemical assays.Inflammatory SF cells significantly suppressed the maturation of DCs upon coculture. PG-TCR-Tg mouse T cells cultured with antigen-loaded DCs showed dramatic decreases in proliferation in the presence of SF cells. Spleen myeloid cells from arthritic mice did not have suppressive effects. SF cells were unable to suppress CD3/CD28-stimulated proliferation of the same T cells, suggesting a DC-dependent mechanism. SF cells exhibited all of the characteristics of myeloid-derived suppressor cells (MDSCs) and exerted suppression primarily through the production of nitric oxide and reactive oxygen species by granulocyte-like cells.SF in the joints of mice with PGIA contains a population of granulocytic MDSCs that potently suppress DC maturation and T cell proliferation. These MDSCs have the potential to limit the expansion of autoreactive T cells, thus breaking the vicious cycle of autoimmunity and inflammation.Copyright © 2012 by the American College of Rheumatology.EgelstonColtCRush University Medical Center, Chicago, Illinois 60612, USA.KurkóJúliaJBesenyeiTimeaTTryniszewskaBeataBRauchTibor ATAGlantTibor TTTMikeczKatalinKengR01 AR051163-05ARNIAMS NIH HHSUnited StatesAR-051163ARNIAMS NIH HHSUnited StatesR21 AR062332-01ARNIAMS NIH HHSUnited StatesR21 AR062332ARNIAMS NIH HHSUnited StatesAR-062332ARNIAMS NIH HHSUnited StatesR01 AR051163ARNIAMS NIH HHSUnited StatesJournal ArticleResearch Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov't
United StatesArthritis Rheum03706050004-3591IMAnimalsArthritis, ExperimentalimmunologymetabolismArthritis, RheumatoidimmunologymetabolismCell ProliferationDendritic CellscytologyimmunologymetabolismLymphocyte ActivationimmunologyMiceMice, TransgenicMyeloid CellscytologyimmunologymetabolismSynovial FluidcytologyimmunologymetabolismT-LymphocytesimmunologymetabolismNone of the authors has financial conflict of interest.
2012412602012412602013117602013101ppublish22492217NIHMS368398PMC340257910.1002/art.34494Bjelle A, Norberg B, Sjogren G. The cytology of joint exudates in rheumatoid arthritis. Morphology and preparation techniques. Scand J Rheumatol. 1982;11:124–128.7089502Yamamoto T, Nishiura H, Nishida H. Molecular mechanisms to form leukocyte infiltration patterns distinct between synovial tissue and fluid of rheumatoid arthritis. Semin Thromb Hemost. 1996;22:507–511.9122716Wipke BT, Allen PM. Essential role of neutrophils in the initiation and progression of a murine model of rheumatoid arthritis. J Immunol. 2001;167:1601–1608.11466382Griffiths RJ, Pettipher ER, Koch K, Farrell CA, Breslow R, Conklyn MJ, et al. Leukotriene B4 plays a critical role in the progression of collagen-induced arthritis. Proc Natl Acad Sci U S A. 1995;92:517–521.PMC427727831322Wipke BT, Wang Z, Nagengast W, Reichert DE, Allen PM. Staging the initiation of autoantibody-induced arthritis: a critical role for immune complexes. J Immunol. 2004;172:7694–7702.15187152Sarraj B, Ludanyi K, Glant TT, Finnegan A, Mikecz K. Expression of CD44 and L-selectin in the innate immune system is required for severe joint inflammation in the proteoglycan-induced murine model of rheumatoid arthritis. J Immunol. 2006;177:1932–1940.16849507Angyal A, Egelston C, Kobezda T, Olasz K, Laszlo A, Glant TT, et al. Development of proteoglycan-induced arthritis depends on T cell-supported autoantibody production, but does not involve significant influx of T cells into the joints. Arthritis Res Ther. 2010;12:R44.PMC288819220298547Wright HL, Moots RJ, Bucknall RC, Edwards SW. Neutrophil function in inflammation and inflammatory diseases. Rheumatology (Oxford) 2010;49:1618–1631.20338884Santiago-Schwarz F, Anand P, Liu S, Carsons SE. Dendritic cells (DCs) in rheumatoid arthritis (RA): progenitor cells and soluble factors contained in RA synovial fluid yield a subset of myeloid DCs that preferentially activate Th1 inflammatory-type responses. J Immunol. 2001;167:1758–1768.11466401Jongbloed SL, Lebre MC, Fraser AR, Gracie JA, Sturrock RD, Tak PP, et al. Enumeration and phenotypical analysis of distinct dendritic cell subsets in psoriatic arthritis and rheumatoid arthritis. Arthritis Res Ther. 2006;8:R15.PMC152656716507115Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–252.9521319van Gisbergen KP, Sanchez-Hernandez M, Geijtenbeek TB, van Kooyk Y. Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between Mac-1 and DC-SIGN. J Exp Med. 2005;201:1281–1292.PMC221314315837813Bennouna S, Bliss SK, Curiel TJ, Denkers EY. Cross-talk in the innate immune system: neutrophils instruct recruitment and activation of dendritic cells during microbial infection. J Immunol. 2003;171:6052–6058.14634118Bennouna S, Denkers EY. Microbial antigen triggers rapid mobilization of TNF-alpha to the surface of mouse neutrophils transforming them into inducers of high-level dendritic cell TNF-alpha production. J Immunol. 2005;174:4845–4851.15814711Youn JI, Gabrilovich DI. The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol. 2010;40:2969–2975.PMC327745221061430Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–174.PMC282834919197294Youn JI, Nagaraj S, Collazo M, Gabrilovich DI. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol. 2008;181:5791–5802.PMC257574818832739Bronte V, Zanovello P. Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol. 2005;5:641–654.16056256Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med. 2007;13:828–835.PMC213560717603493Harari O, Liao JK. Inhibition of MHC II gene transcription by nitric oxide and antioxidants. Curr Pharm Des. 2004;10:893–898.PMC263359315032692Berlo SE, Guichelaar T, ten Brink CB, Van Kooten PJ, Hauet-Broere F, Ludanyi K, et al. Increased arthritis susceptibility in cartilage proteoglycan-specific T cell receptor-transgenic mice. Arthritis Rheum. 2006;54:2423–2433.16869010Faust N, Varas F, Kelly LM, Heck S, Graf T. Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood. 2000;96:719–726.10887140Glant TT, Mikecz K, Arzoumanian A, Poole AR. Proteoglycan-induced arthritis in BALB/c mice. Clinical features and histopathology. Arthritis Rheum. 1987;30:201–212.3827960Mikecz K, Glant TT, Poole AR. Immunity to cartilage proteoglycans in BALB/c mice with progressive polyarthritis and ankylosing spondylitis induced by injection of human cartilage proteoglycan. Arthritis Rheum. 1987;30:306–318.3566822Glant TT, Finnegan A, Mikecz K. Proteoglycan-induced arthritis: immune regulation, cellular mechanisms and genetics. Crit Rev Immunol. 2003;23:199–250.14584879Hanyecz A, Berlo SE, Szanto S, Broeren CPM, Mikecz K, Glant TT. Achievement of a synergistic adjuvant effect on arthritis induction by activation of innate immunity and forcing the immune response toward the Th1 phenotype. Arthritis Rheum. 2004;50:1665–1676.15146438Glant TT, Radacs M, Nagyeri G, Olasz K, Laszlo A, Boldizsar F, et al. Proteoglycan-induced arthritis and recombinant human proteoglycan aggrecan G1 domain-induced arthritis in BALB/c mice resembling two types of rheumatoid arthritis. Arthritis Rheum. 2011;63:1312–1321.PMC308693321305522Lutz MB, Kukutsch N, Ogilvie AL, Rossner S, Koch F, Romani N, et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods. 1999;223:77–92.10037236Germain RN, Bhattacharya A, Dorf ME, Springer TA. A single monoclonal anti-Ia antibody inhibits antigen-specific T cell proliferation controlled by distinct Ir genes mapping in different H-2 I subregions. J Immunol. 1982;128:1409–1413.6173436Ferraro C, Quemeneur L, Fournel S, Prigent AF, Revillard JP, Bonnefoy-Berard N. The topoisomerase inhibitors camptothecin and etoposide induce a CD95-independent apoptosis of activated peripheral lymphocytes. Cell Death Differ. 2000;7:197–206.10713734Rudolf K, Cervinka M, Rudolf E. Dual inhibition of topoisomerases enhances apoptosis in melanoma cells. Neoplasma. 2010;57:316–324.20429622Corraliza IM, Campo ML, Soler G, Modolell M. Determination of arginase activity in macrophages: a micromethod. J Immunol Methods. 1994;174:231–235.8083527Kusmartsev S, Gabrilovich DI. Inhibition of myeloid cell differentiation in cancer: the role of reactive oxygen species. J Leukoc Biol. 2003;74:186–196.12885935Zhu B, Bando Y, Xiao S, Yang K, Anderson AC, Kuchroo VK, et al. CD11b+Ly-6C(hi) suppressive monocytes in experimental autoimmune encephalomyelitis. J Immunol. 2007;179:5228–5237.17911608Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, et al. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res. 2005;65:3044–3048.15833831Sallusto F, Lanzavecchia A. The instructive role of dendritic cells on T-cell responses. Arthritis Res. 2002;4 (Suppl 3):S127–S132.PMC324014312110131Henrickson SE, Mempel TR, Mazo IB, Liu B, Artyomov MN, Zheng H, et al. T cell sensing of antigen dose governs interactive behavior with dendritic cells and sets a threshold for T cell activation. Nat Immunol. 2008;9:282–291.PMC269886718204450Makarenkova VP, Bansal V, Matta BM, Perez LA, Ochoa JB. CD11b+/Gr-1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress. J Immunol. 2006;176:2085–2094.16455964Schmielau J, Finn OJ. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res. 2001;61:4756–4760.11406548Lim MB, Kuiper JW, Katchky A, Goldberg H, Glogauer M. Rac2 is required for the formation of neutrophil extracellular traps. J Leukoc Biol. 2011;90:771–776.21712395Kumar S, Jyoti A, Keshari RS, Singh M, Barthwal MK, Dikshit M. Functional and molecular characterization of NOS isoforms in rat neutrophil precursor cells. Cytometry A. 2010;77:467–477.20104578Bansal S, Siddarth M, Chawla D, Banerjee BD, Madhu SV, Tripathi AK. Advanced glycation end products enhance reactive oxygen and nitrogen species generation in neutrophils in vitro. Mol Cell Biochem. 2012;361:289–296.22048812Xu W, Firestein GS, Taetle R, Kaushansky K, Zvaifler NJ. Cytokines in chronic inflammatory arthritis. II. Granulocyte- macrophage colony-stimulating factor in rheumatoid synovial effusions. J Clin Invest. 1989;83:876–882.PMC3037612646320Dolcetti L, Peranzoni E, Ugel S, Marigo I, Fernandez GA, Mesa C, et al. Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol. 2010;40:22–35.19941314Condamine T, Gabrilovich DI. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 2011;32:19–25.PMC305302821067974Belz GT, Heath WR, Carbone FR. The role of dendritic cell subsets in selection between tolerance and immunity. Immunol Cell Biol. 2002;80:463–468.12225382Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol. 2003;21:685–711.12615891Yang CW, Strong BS, Miller MJ, Unanue ER. Neutrophils influence the level of antigen presentation during the immune response to protein antigens in adjuvants. J Immunol. 2010;185:2927–2934.PMC350975620679530
217337302012070220200205
1778-72547862011DecJoint bone spineJoint Bone SpineAssociations of HLA-shared epitope, anti-citrullinated peptide antibodies and lifestyle-related factors in Hungarian patients with rheumatoid arthritis: data from the first Central-Eastern European cohort.652653652-310.1016/j.jbspin.2011.05.018BesenyeiTimeaTGyetvaiAgnesASzabóZoltánZFeketeAndreaAKapitányAnikóASzodorayPéterPLakiJuditJSoósLillaLSipkaSándorSSzegediGyulaGLakosGabriellaGSzekaneczZoltánZengLetter20110705
FranceJoint Bone Spine1009380161297-319X0Antibodies, Anti-Idiotypic0Epitopes0HLA-DRB1 Chains0Peptides, Cyclic0cyclic citrullinated peptideIMAdultAgedAllelesAntibodies, Anti-IdiotypicbloodArthritis, RheumatoidethnologygeneticsimmunologyCohort StudiesEpitopesgeneticsEurope, EasternFemaleGenetic Predisposition to DiseasegeneticsHLA-DRB1 ChainsgeneticsHealth SurveysHumansHungaryLife StyleMaleMiddle AgedPeptides, CyclicimmunologyRetrospective StudiesSurveys and Questionnaires
201012172011511201178602011786020127360ppublish2173373010.1016/j.jbspin.2011.05.018S1297-319X(11)00140-0
203055622010061520211020
1531-69632232010MayCurrent opinion in rheumatologyCurr Opin RheumatolAngiogenesis and vasculogenesis in rheumatoid arthritis.299306299-30610.1097/BOR.0b013e328337c95aAngiogenesis is the formation of new capillaries from pre-existing vessels, whereas vasculogenesis is de-novo capillary formation from endothelial precursor cells (EPCs). Current understanding of the role of angiogenesis and vasculogenesis in rheumatoid arthritis (RA) and possibilities of therapeutic intervention should be summarized.There have been many recent studies on the role of the hypoxia and hypoxia-inducible factor (HIF)-vascular endothelial growth factor (VEGF)-angiopoietin axis in angiogenesis associated with RA. The role of additional growth factors, chemokines, cytokines, matrix components and adhesion molecules has been further characterized. Macrophage migration inhibitory factor (MIF) may link inflammation, angiogenesis and atherosclerosis. Junctional adhesion molecules (JAMs) and focal adhesion kinases (FAKs) have recently been implicated in inflammatory angiogenesis. Novel information regarding the role of serum amyloid A (SAA) and sphingosine kinase has become available. Most of these angiogenic factors have recently been targeted using various techniques and arthritis models. Whereas angiogenesis is abundant in RA, there is defective EPC function and vasculogenesis leading to atherosclerosis and vascular disease in arthritis. Treatment with EPCs already under investigation in vascular diseases may also be attempted in RA.Targeting angiogenesis and restoration of vasculogenesis may be beneficial for the therapy and outcome of RA.SzekaneczZoltánZDepartment of Rheumatology, Institute of Medicine, University of Debrecen Medical and Health Sciences Center, Hungary. szekanecz.zoltan@med.unideb.huBesenyeiTimeaTSzentpéteryAgnesAKochAlisa EAEengR01 AR048267ARNIAMS NIH HHSUnited StatesAR-048267ARNIAMS NIH HHSUnited StatesJournal ArticleResearch Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov'tReview
United StatesCurr Opin Rheumatol90008511040-87110Angiogenesis Inhibitors0Angiogenic ProteinsIMAngiogenesis Inhibitorspharmacologytherapeutic useAngiogenic Proteinsantagonists & inhibitorsmetabolismArthritiscomplicationsmetabolismphysiopathologyArthritis, RheumatoidcomplicationsmetabolismphysiopathologyBlood Vesselsdrug effectsmetabolismphysiopathologyEndothelial Cellsdrug effectsimmunologymetabolismHumansNeovascularization, Pathologicdrug therapyimmunologyphysiopathologyVascular Diseasesdrug therapyimmunologyphysiopathology112
201032360201032360201061660ppublish2030556210.1097/BOR.0b013e328337c95a
200225382010050420211020
1778-72547712010JanJoint bone spineJoint Bone SpineNew insights in synovial angiogenesis.131913-910.1016/j.jbspin.2009.05.011Angiogenesis is the formation of new capillaries from pre-existing vessels. A number of soluble and cell-bound factors may stimulate neovascularization. The perpetuation of angiogenesis involving numerous soluble and cell surface-bound mediators has been associated with rheumatoid arthritis (RA). These angiogenic mediators, among others, include growth factors, primarily vascular endothelial growth factor (VEGF) and hypoxia-inducible factors (HIFs), as well as pro-inflammatory cytokines, various chemokines, cell adhesion molecules, proteases and others. Among the several potential angiogenesis inhibitors, targeting of VEGF, HIF-1, angiopoietin and the alpha(V)beta(3) integrin, as well as some endogenous or synthetic compounds including angiostatin, endostatin, paclitaxel, fumagillin analogues, 2-methoxyestradiol and thalidomide seems to be promising for the management of synovial inflammation and angiogenesis. A complete review of antiangiogenic drugs used in animal models of arthritis or human RA is available in a table.Copyright 2009 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.SzekaneczZoltánZDepartment of Rheumatology, Institute of Medicine, University of Debrecen Medical and Health Sciences Center, 98, Nagyerdei street, Debrecen, H-4032, Hungary. szekanecz.zoltan@med.unideb.huBesenyeiTimeaTParaghGyörgyGKochAlisa EAEengR01 AR048267ARNIAMS NIH HHSUnited StatesR01 AR048267-05ARNIAMS NIH HHSUnited StatesAR-048267ARNIAMS NIH HHSUnited StatesJournal ArticleResearch Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov'tResearch Support, U.S. Gov't, Non-P.H.S.Review20091221
FranceJoint Bone Spine1009380161297-319X0Angiogenesis Inhibitors0VEGFA protein, human0Vascular Endothelial Growth Factor AIMAngiogenesis Inhibitorstherapeutic useAnimalsArthritis, Rheumatoiddrug therapymetabolismphysiopathologyDisease Models, AnimalHumansNeovascularization, Pathologicdrug therapymetabolismphysiopathologySynovial Membraneblood supplydrug effectsVascular Endothelial Growth Factor AmetabolismConflicts of interest. The authors have no conflicts of interest to declare.
20081113200951420091222602009122260201055602010727ppublish20022538NIHMS222100PMC291051410.1016/j.jbspin.2009.05.011S1297-319X(09)00202-4Szekanecz Z, Koch AE. Vascular involvement in rheumatic diseases: ‘vascular rheumatology’. Arthritis Res Ther. 2008;10:224.PMC259279918947376Szekanecz Z, Koch AE. Mechanism of disease: angiogenesis in inflammatory diseases. Nat Clin Pract Rheumatol. 2007;3:635–643.17968334Lainer-Carr D, Brahn E. Angiogenesis inhibition as a therapeutic approach for inflammatory synovitis. Nat Clin Pract Rheumatol. 2007;3:434–442.17664950Folkman J, Klagsbrun M. Angiogenic factors. Science. 1987;235:442–447.2432664Szekanecz Z, Koch AE. Chemokines and angiogenesis. Curr Opin Rheumatol. 2001;13:202–208.11333349Veale DJ, Fearon U. Inhibition of angiogenic pathways in rheumatoid arthritis: potential for therapeutic targeting. Best Pract Res Clin Rheumatol. 2006;20:941–947.16980216Agarwal SK, Brenner MB. Role of adhesion molecules in synovial inflammation. Curr Opin Rheumatol. 2006;18:268–276.16582691Szekanecz Z, Koch AE. Macrophages and their products in rheumatoid arthritis. Curr Opin Rheumatol. 2007;19:289–295.17414958Koch AE, Harlow LA, Haines GK, et al. Vascular endothelial growth factor. A cytokine modulating endothelial function in rheumatoid arthritis. J Immunol. 1994;152:4149–4156.7511670Kiselyov A, Balakin KV, Tkachenko SE. VEGF/VEGFR signaling as a target for inhibiting angiogenesis. Expert Opin Investig Drugs. 2007;16:83–107.17155856Taylor PC, Sivakumar B. Hypoxia and angiogenesis in rheumatoid arthritis. Curr Opin Rheumatol. 2005;17:293–298.15838239Giatromanolaki A, Sivridis E, Maltezos E, et al. Upregulated hypoxia inducible factor-1α and -2α pathway in rheumatoid arthritis and osteoarthritis. Arthritis Res Ther. 2003;5:R193–R198.PMC16505512823854Arany Z, Foo SY, Ma Y, et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature. 2008;451:1008–1012.18288196Honorati MC, Neri S, Cattini L, et al. Interleukin-17, a regulator of angiogenic factor release by synovial fibroblasts. Osteoarthritis Cartilage. 2006;14:345–352.16311048Strieter RM, Polverini PJ, Kunkel SL, et al. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem. 1995;270:27348–27357.7592998Pablos JL, Santiago B, Galindo M, et al. Synoviocyte-derived CXCL12 is displayed on endothelium and induces angiogenesis in rheumatoid arthritis. J Immunol. 2003;170:2147–2152.12574387Salcedo R, Ponce ML, Young HA, et al. Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood. 2000;96:34–40.10891427Nanki T, Hayashida K, El-Gabalawy HS, et al. Stromal cell-derived factor-1-CXC chemokine receptor 4 interactions play a central role in CD4+ T-cell accumulation in rheumatoid arthritis synovium. J Immunol. 2000;165:6590–6598.11086103Madri JA, Williams KS. Capillary endothelial cell cultures: phenotypic modulation by matrix components. J Cell Biol. 1983;97:153–165.PMC21124966190818Imhof BA, Aurrand-Lions M. Adhesion mechanisms regulating the migration of monocytes. Nat Rev Immunol. 2004;4:432–444.15173832Koch AE, Halloran MM, Haskell CJ, et al. Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1. Nature. 1995;376:517–519.7543654Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science. 1994;264:569–571.7512751Naik TU, Naik MU, Naik UP. Junctional adhesion molecules in angiogenesis. Front Biosci. 2008;13:258–262.17981544Jacq L, Garnier S, Dieudé P, et al. The ITGAV rs3738919-C allele is associated with rheumatoid arthritis in the European Caucasian population: a family-based study. Arthritis Res Ther. 2007;9:R63.PMC220636417615072Shahrara S, Castro-Rueda HP, Haines GK, et al. Differential expression of the FAK family kinases in rheumatoid arthritis and osteoarthritis synovial tissues. Arthritis Res Ther. 2007;9:R112.PMC221255917963503Kneilling M, Hültner L, Pichler BJ, et al. Targeted mast cell silencing protects against joint destruction and angiogenesis in experimental arthritis in mice. Arthritis Rheum. 2007;56:1806–1816.17530709Brennan F, Beech J. Update on cytokines in rheumatoid arthritis. Curr Opin Rheumatol. 2007;19:296–301.17414959Markham T, Mullan R, Golden-Mason L, et al. Resolution of endothelial activation and down-regulation of Tie2 receptor in psoriatic skin after infliximab therapy. J Am Acad Dermatol. 2006;54:1003–1012.16713454Nakahara H, Song J, Sugimoto M, et al. Anti-interleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis. Arthritis Rheum. 2003;48:1521–1529.12794819Amin MA, Mansfield PJ, Pakozdi A, et al. Interleukin-18 induces angiogenic factors in rheumatoid arthritis synovial tissue fibroblasts via distinct signaling pathways. Arthritis Rheum. 2007;56:1787–1797.17530707Fearon U, Mullan R, Markham T, et al. Oncostatin M induces angiogenesis and cartilage degradation in rheumatoid arthritis synovial tissue and human cartilage cocultures. Arthritis Rheum. 2006;54:3152–3162.17009243Amin MA, Volpert OV, Woods JM, et al. Migration inhibitory factor mediates angiogenesis via mitogen-activated protein kinase and phosphatidylinositol kinase. Circ Res. 2003;93:321–329.12881477Morand EF, Leech M, Bernhagen J. MIF: a new cytokine link between rheumatoid arthritis and atherosclerosis. Nat Rev Drug Discov. 2006;5:399–410.16628200Koch AE, Distler O. Vasculopathy and disordered angiogenesis in selected rheumatic diseases: rheumatoid arthritis and systemic sclerosis. Arthritis Res Ther. 2007;9 Suppl. 2:S3.PMC207288917767741Mullan RH, Bresnihan B, Golden-Mason L, et al. Acute-phase serum amyloid A stimulation of angiogenesis, leukocyte recruitment and matrix degradation in rheumatoid arthritis through an NF-κB-dependent signal transduction pathway. Arthritis Rheum. 2006;54:105–114.16385502Hong KH, Cho ML, Min SY, et al. Effect of interleukin-4 on vascular endothelial growth factor production in rheumatoid synovial fibroblasts. Clin Exp Immunol. 2007;147:573–579.PMC181049917302909Boulday G, Haskova Z, Reinders ME, et al. Vascular endothelial growth factor-induced signaling pathways in endothelial cells that mediate overexpression of the chemokine IFN-gamma-inducible protein of 10 kDa in vitro and in vivo. J Immunol. 2006;176:3098–3107.16493069Vicari AP, Ait-Yahia S, Chemin K, et al. Antitumor effects of the mouse chemokine 6Ckine/SLC through angiostatic and immunological mechanisms. J Immunol. 2000;165:1992–2000.10925282Yin G, Liu W, An P, et al. Endostatin gene transfer inhibits joint angiogenesis and pannus formation in inflammatory arthritis. Mol Ther. 2002;5:547–554.11991745Sumariwalla PF, Cao Y, Wu HL, et al. The angiogenesis inhibitor protease-activated kringles 1–5 reduces the severity of murine collagen-induced arthritis. Arthritis Res Ther. 2003;5:R32–R39.PMC15442812716451Wang CR, Chen SY, Shiau AL, et al. Upregulation of kallistatin expression in rheumatoid joints. J Rheumatol. 2007;34:2171–2176.17937475Mundel TM, Kalluri R. Type IV collagen-derived angiogenesis inhibitors. Microvasc Res. 2007;74:85–89.PMC399872117602710Park YW, Kang YM, Butterfield J, et al. Thrombospondin 2 functions as an endogenous regulator of angiogenesis and inflammation in rheumatoid arthritis. Am J Pathol. 2004;165:2087–2098.PMC161870415579451Haas CS, Amin MA, Allen BB, et al. Inhibition of angiogenesis by interleukin-4 gene therapy in rat adjuvant-induced arthritis. Arthritis Rheum. 2006;54:2402–2414.16869003Haas CS, Amin MA, Ruth JH, et al. In vivo inhibition of angiogenesis by interleukin-13 gene therapy in a rat model of rheumatoid arthritis. Arthritis Rheum. 2007;56:2535–2548.17665443Mabjeesh NJ, Escuin D, LaVallee TM, et al. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell. 2003;3:363–375.12726862Issekutz AC, Sapru K. Modulation of adjuvant arthritis in the rat by 2-methoxyestradiol: an effect independent of an anti-angiogenic action. Int Immunopharmacol. 2008;8:708–716.18387513Manley PW, Martiny-Baron G, Schlaeppi JM, et al. Therapies directed at vascular endothelial growth factor. Expert Opin Investig Drugs. 2002;11:1715–1736.12457433Grosios K, Wood J, Esser R, et al. Angiogenesis inhibition by the novel VEGF tyrosine kinase inhibitor. PTK787/ZK222584, causes significant anti-arthritic effects in models of rheumatoid arthritis. Inflamm Res. 2004;53:133–142.15060719Guttmann-Raviv N, Shraga-Heled N, Varshavsky A, et al. Semaphorin-3A and semaphorin-3F work together to repel endothelial cells and to inhibit their survival by induction of apoptosis. J Biol Chem. 2007;282:26294–26305.17569671Yeo EJ, Chun YS, Cho YS, et al. YC-1: a potential anticancer drug targeting hypoxia-inducible factor 1. J Natl Cancer Inst. 2003;95:516–525.12671019Chen Y, Donnelly E, Kobayashi H, et al. Gene therapy targeting the Tie2 function ameliorates collagen-induced arthritis and protects against bone destruction. Arthritis Rheum. 2005;52:1585–1594.15880817Wente MN, Keane MP, Burdick MD, et al. Blockade of the chemokine receptor CXCR2 inhibits pancreatic cancer cell-induced angiogenesis. Cancer Lett. 2006;241:221–227.16458421Yin Y, Huang L, Zhao X, et al. AMD3100 mobilizes endothelial progenitor cells in mice, but inhibits its biological functions by blocking an autocrine/paracrine regulatory loop of stromal cell derived factor-1 in vitro. J Cardiovasc Pharmacol. 2007;50:61–67.17666917Skotnicki JS, Zask A, Nelson FC, et al. Design and synthetic considerations of matrix metalloproteinase inhibitors. Ann NY Acad Sci. 1999;878:61–72.10415720Goedkoop AY, Kraan MC, Picavet DI, et al. Deactivation of endothelium and reduction in angiogenesis in psoriatic skin and synovium by low dose infliximab therapy in combination with stable methotrexate therapy. Arthritis Res Ther. 2004;6:R326–R334.PMC46487215225368D’Amato RJ, Loughnan MS, Flynn E, et al. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A. 1994;91:4082–4085.PMC437277513432Ingber D, Fujita T, Kishimoto S, et al. Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth. Nature. 1990;348:555–557.1701033McCarey DW, Sattar N, McInnes IB. Do the pleiotropic effects of statins in the vasculature predict a role in inflammatory diseases? Arthritis Res Ther. 2005;7:55–61.PMC106533215743490Bongartz T, Coras B, Vogt T, et al. Treatment of active psoriatic arthritis with the PPARγ ligand pioglitazone: an open-label pilot study. Rheumatology. 2005;44:126–129.15479756
199453232010022520211020
1778-72547662009DecJoint bone spineJoint Bone SpineEndothelial progenitor cells in arthritis-associated vasculogenesis and atherosclerosis.581583581-310.1016/j.jbspin.2009.04.007Vasculogenesis is the generation of vessels from endothelial progenitor cells (EPCs). Attenuated numbers and function of EPCs associated with defective vasculogenesis are present in rheumatoid arthritis (RA), scleroderma and other autoimmune-inflammatory diseases, which have significant relevance for increased cardio- and cerebrovascular morbidity and mortality in arthritis [–5]. Stimulation of EPCs and vasculogenesis may be beneficial to prevent and manage atherosclerosis related to arthritis. [–5].PákozdiAngélaABesenyeiTimeaTParaghGyörgyGKochAlisa EAESzekaneczZoltánZengR01 AR048267ARNIAMS NIH HHSUnited StatesR01 AR048267-05ARNIAMS NIH HHSUnited StatesEditorial
FranceJoint Bone Spine1009380161297-319X0Antibodies, Monoclonal0BiomarkersIMAntibodies, Monoclonaladministration & dosageArthritis, RheumatoidcomplicationsphysiopathologytherapyAtherosclerosiscomplicationsphysiopathologytherapyBiomarkersmetabolismEndothelium, VascularphysiopathologyHumansMesenchymal Stem Cell TransplantationMesenchymal Stem CellscytologyphysiologyNeovascularization, PathologicphysiopathologySynovial Membraneblood supplyConflicts of interest. The authors have no conflict of interest to declare.
2008122920094232009121602009121602010226602010811ppublish19945323NIHMS222049PMC291975010.1016/j.jbspin.2009.04.007S1297-319X(09)00187-0Freedman SB, Isner JM. Therapeutic angiogenesis for ischemic cardiovascular disease. J Mol Cell Cardiol. 2001;33:379–93.11181008Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood. 2000;95:952–8.10648408Shoenfeld Y, Gerli R, Doria A, et al. Accelerated atherosclerosis in autoimmune rheumatic diseases. Circulation. 2005;112:3337–47.16301360Szekanecz Z, Kerekes G, Dér H, et al. Accelerated atherosclerosis in rheumatoid arthritis. Ann NY Acad Sci. 2007;1108:349–58.17893998Grisar J, Aletaha D, Steiner CW, et al. Endothelial progenitor cells in active rheumatoid arthritis: effects of tumour necrosis factor and glucocorticoid therapy. Ann Rheum Dis. 2007;66:1284–8.PMC199429117293363Paleolog E. It’s all in the blood: circulating endothelial progenitor cells link synovial vascularity with cardiovascular mortality in rheumatoid arthritis? Arthritis Res Ther. 2005;7:270–2.PMC129759416277702Avouac J, Uzan G, Kahan A, et al. Endothelial progenitor cells and rheumatic disorders. Joint Bone Spine. 2008;75:131–7.18314371Gehling UM, Ergun S, Schumacher U, et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood. 2000;95:3106–12.10807776Rüger B, Giurea A, Wanivenhaus AH, et al. Endothelial precursor cells in the synovial tissue of patients with rheumatoid arthritis and osteoarthritis. Arthritis Rheum. 2004;50:2157–66.15248213Silverman MD, Haas CS, Rad AM, et al. The role of vascular cell adhesion molecule 1/very late activation antigen 4 in endothelial progenitor cell recruitment to rheumatoid arthritis synovium. Arthritis Rheum. 2007;56:1817–26.17530710Herbrig K, Haensel S, Oelschlaegel U, et al. Endothelial dysfunction in patients with rheumatoid arthritis is associated with a reduced number and impaired function of endothelial progenitor cells. Ann Rheum Dis. 2006;65:157–63.PMC179803915975971Petit I, Jin D, Rafii S. The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends Immunol. 2007;28:299–307.PMC295249217560169Ceradini DJ, Gurtner GC. Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue. Trends Cardiovasc Med. 2005;15:57–63.15885571Fan Y, Ye J, Shen F, et al. Interleukin-6 stimulates circulating blood-derived endothelial progenitor cell angiogenesis in vitro. J Cereb Blood Flow Metab. 2008;28:90–8.PMC258149817519976Oh IY, Yoon CH, Hur J, et al. Involvement of E-selectin in recruitment of endothelial progenitor cells and angiogenesis in ischemic muscle. Blood. 2007;110:3891–9.17699745Akhavani MA, Larsen H, Paleolog E. Circulating endothelial progenitor cells link between synovial vascularity and cardiovascular mortality in rheumatoid arthritis. Scand J Rheumatol. 2007;36:83–90.17476612Ablin JN, Boguslavski V, Aloush V, et al. Effect of anti-TNFα treatment on circulating endothelial progenitor cells (EPCs) in rheumatoid arthritis. Life Sci. 2006;79:2364–9.16962143Jacobsson LT, Turesson C, Gülfe A, et al. Treatment with tumor necrosis factor blockers is associated with a lower incidence of first cardiovascular events in patients with rheumatoid arthritis. J Rheumatol. 2005;32:1213–8.15996054Dixon WG, Watson KD, Lunt M, et al. Reduction in the incidence of myocardial infarction in patients with rheumatoid arthritis who respond to anti-tumor necrosis factor alpha therapy: results from the British Society for Rheumatology Biologics Register. Arthritis Rheum. 2007;56:2905–12.PMC243542717763428Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.9020076
198633752010011120220317
1607-842X4272009NovAutoimmunityAutoimmunityAngiogenesis in rheumatoid arthritis.563573563-73Angiogenesis is the formation of new capillaries from pre-existing vessels. A number of soluble and cell-bound factors may stimulate neovascularization. The perpetuation of angiogenesis involving numerous soluble and cell surface-bound mediators has been associated with rheumatoid arthritis (RA). These angiogenic mediators, among others, include growth factors, primarily vascular endothelial growth factor (VEGF) and hypoxia-inducible factors (HIFs), as well as pro-inflammatory cytokines, various chemokines, matrix components, cell adhesion molecules, proteases and others. Among the several potential angiogenesis inhibitors, targeting of VEGF, HIF-1, angiogenic chemokines, tumor necrosis factor-alpha and the alpha(V)beta(3) integrin may attenuate the action of angiogenic mediators and thus synovial angiogenesis. In addition, some naturally produced or synthetic compounds including angiostatin, endostatin, paclitaxel, fumagillin analogues, 2-methoxyestradiol and thalidomide may be included in the management of RA.SzekaneczZoltánZDepartment of Rheumatology, Institute of Medicine, University of Debrecen Medical and Health Sciences Center, Debrecen, H-4032, Hungary. szekanecz.zoltan@med.unideb.huBesenyeiTimeaTParaghGyörgyGKochAlisa EAEengR01 AI040987-08AINIAID NIH HHSUnited StatesR01 AR048267ARNIAMS NIH HHSUnited StatesR01 AI040987AINIAID NIH HHSUnited StatesAR-048267ARNIAMS NIH HHSUnited StatesR01 AR048267-05ARNIAMS NIH HHSUnited StatesJournal ArticleResearch Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov'tResearch Support, U.S. Gov't, Non-P.H.S.Review
EnglandAutoimmunity89000700891-69340Angiogenesis Inhibitors0Cell Adhesion Molecules0Cytokines0Inflammation Mediators0Receptors, Chemokine0Vascular Endothelial Growth Factor AIMAngiogenesis InhibitorsimmunologymetabolismAnimalsArthritis, RheumatoidimmunologymetabolismBlood VesselsimmunologymetabolismCell Adhesion MoleculesimmunologymetabolismCytokinesimmunologymetabolismExtracellular MatriximmunologymetabolismHumansInflammation MediatorsimmunologymetabolismNeovascularization, PathologicimmunologymetabolismReceptors, ChemokineimmunologymetabolismVascular Endothelial Growth Factor Aimmunologymetabolism
20091030602009103060201011260201089ppublish19863375NIHMS222118PMC291791910.1080/0891693090314308310.1080/08916930903143083Koch AE. Angiogenesis: Implications for rheumatoid arthritis. Arthritis Rheum. 1998;41:951–962.9627005Szekanecz Z, Koch AE. Endothelial cells in inflammation and angiogenesis. Curr Drug Targ. 2005;4:319–323.16101540Szekanecz Z, Koch AE. Vascular involvement in rheumatic diseases: ‘vascular rheumatology’. Arthritis Res Ther. 2008;10:224.PMC259279918947376Foster W, Carruthers D, Lip GY, Blann AD. Relationship between endothelial inflammatory and angiogenesis markers in rheumatoid arthritis: Implications for cardiovascular pathophysiology. Thromb Res. 2009;4:659–664.18692223Szekanecz Z, Koch AE. Mechanism of disease: Angiogenesis in inflammatory diseases. Nat Clin Pract Rheumatol. 2007;3:635–643.17968334Lainer-Carr D, Brahn E. Angiogenesis inhibition as a therapeutic approach for inflammatory synovitis. Nat Clin Pract Rheumatol. 2007;3:434–442.17664950Folkman J, Klagsbrun M. Angiogenic factors. Science. 1987;235:442–447.2432664Szekanecz Z, Koch AE. Chemokines and angiogenesis. Curr Opin Rheumatol. 2001;13:202–208.11333349Naumov GN, Folkman J, Straume O, Akslen LA. Tumor-vascular interactions and tumor dormancy. APMIS. 2008;116:569–585.18834403Shams N, Ianchulev T. Role of vascular endothelial growth factor in ocular angiogenesis. Ophthalmol Clin North Am. 2006;19:335–344.16935208Jakobsson L, Claesson-Welsh L. Vascular basement membrane components in angiogenesis—an act of balance. Sci World J. 2008;8:1246–1249.PMC584870119082420Veale DJ, Fearon U. Inhibition of angiogenic pathways in rheumatoid arthritis: Potential for therapeutic targeting. Best Pract Res Clin Rheumatol. 2006;20:941–947.16980216Agarwal SK, Brenner MB. Role of adhesion molecules in synovial inflammation. Curr Opin Rheumatol. 2006;18:268–276.16582691Szekanecz Z, Koch AE. Macrophages and their products in rheumatoid arthritis. Curr Opin Rheumatol. 2007;19:289–295.17414958Koch AE, Harlow LA, Haines GK, Amento EP, Unemori EN, Wong WL, Pope RM, Ferrara N. Vascular endothelial growth factor. A cytokine modulating endothelial function in rheumatoid arthritis. J Immunol. 1994;152:4149–4156.7511670Kiselyov A, Balakin KV, Tkachenko SE. VEGF/VEGFR signaling as a target for inhibiting angiogenesis. Expert Opin Investig Drugs. 2007;16:83–107.17155856Shibuya M. Vascular endothelial growth factor-dependent and -independent regulation of angiogenesis. BMB Rep. 2008;41:278–286.18452647Hernandez GL, Volpert OV, Iñiguez MA, Lorenzo E, Martínez-Martínez S, Grau R, Fresno M, Redondo JM. Selective inhibition of vascular endothelial growth factor-mediated angiogenesis by cyclosporin A: Roles of the nuclear factor of activated T cells and cyclooxygenase 2. J Exp Med. 2001;193:607–612.PMC219338911238591Taylor PC, Sivakumar B. Hypoxia and angiogenesis in rheumatoid arthritis. Curr Opin Rheumatol. 2005;17:293–298.15838239Amin MA, Mansfield PJ, Pakozdi A, Campbell PL, Ahmed S, Martinez RJ, Koch AE. Interleukin-18 induces angiogenic factors in rheumatoid arthritis synovial tissue fibroblasts via distinct signaling pathways. Arthritis Rheum. 2007;56:1787–1797.17530707Kim HR, Park MK, Cho ML, Yoon CH, Lee SH, Park SH, Leng L, Bucala R, Kang I, Choe J, Kim HY. Macrophage migration inhibitory factor upregulates angiogenic factors and correlates with clinical measures in rheumatoid arthritis. J Rheumatol. 2007;34:927–936.17407222Koch AE, Distler O. Vasculopathy and disordered angiogenesis in selected rheumatic diseases: Rheumatoid arthritis and systemic sclerosis. Arthritis Res Ther. 2007;9(Suppl. 2):S3.PMC207288917767741Haq A, El-Ramahi K, Al-Dalaan A. Serum and synovial fluid concentrations of endothelin-1 in patients with inflammatory arthritides. J Med. 1999;30:51–60.10515240Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, Boland P, Leidich R, Hylton D, Burova E, Ioffe E, Huang T, Radziejewski C, Bailey K, Fandl JP, Daly T, Wiegand SJ, Yancopoulos GD, Rudge JS. VEGF-Trap: A VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA. 2002;99:11393–11398.PMC12326712177445Manley PW, Martiny-Baron G, Schlaeppi JM, Wood JM. Therapies directed at vascular endothelial growth factor. Expert Opin Investig Drugs. 2002;11:1715–1736.12457433Grosios K, Wood J, Esser R, Raychaudhuri A, Dawson J. Angiogenesis inhibition by the novel VEGF tyrosine kinase inhibitor, PTK787/ZK222584, causes significant anti-arthritic effects in models of rheumatoid arthritis. Inflamm Res. 2004;53:133–142.15060719Kim WU, Kwok SK, Hong KH, Yoo SA, Kong JS, Choe J, Cho CS. Soluble Fas ligand inhibits angiogenesis in rheumatoid arthritis. Arthritis Res Ther. 2007;26:R42.PMC190682017459170Choi ST, Kim JH, Seok JY, Park YB, Lee SK. Therapeutic effect of anti-vascular endothelial growth factor receptor I antibody in the established collagen-induced arthritis mouse model. Clin Rheumatol. 2009;3:333–337.19101756Guttmann-Raviv N, Shraga-Heled N, Varshavsky A, Guimaraes-Sternberg C, Kessler O, Neufeld G. Semaphorin-3A and semaphorin-3F work together to repel endothelial cells and to inhibit their survival by induction of apoptosis. J Biol Chem. 2007;282:26294–26305.17569671Fearon U, Veale DJ. Angiogenesis in arthritis: Methodological and analytical details. Methods Mol Med. 2007;135:343–357.17951670Giatromanolaki A, Sivridis E, Maltezos E, Athanassou N, Papazoglou D, Gatter KC, Harris AL, Koukourakis MI. Upregulated hypoxia inducible factor-1α and -2α pathway in rheumatoid arthritis and osteoarthritis. Arthritis Res Ther. 2003;5:R193–R198.PMC16505512823854Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, Cooper M, Laznik D, Chinsomboon J, Rangwala SM, Baek KH, Rosenzweig A, Spiegelman BM. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature. 2008;451:1008–1012.18288196Aljada A, O'Connor L, Fu YY, Mousa SA. PPARγ ligands, rosiglitazone and pioglitazone inhibit bFGF- and VEGF-mediated angiogenesis. Angiogenesis. 2008;11:361–367.18810647Bongartz T, Coras B, Vogt T, Schölmerich J, Müller-Ladner U. Treatment of active psoriatic arthritis with the PPARγ ligand pioglitazone: An open-label pilot study. Rheumatology. 2005;44:126–129.15479756Piqueras L, Reynolds AR, Hodivala-Dilke KM, Alfranca A, Redondo JM, Hatae T, Tanabe T, Warner TD, Bishop-Bailey D. Activation of PPARβ/δ induces endothelial cell proliferation and angiogenesis. Arterioscler Thromb Vasc Biol. 2007;27:63–69.17068288Yeo EJ, Chun YS, Cho YS, Kim J, Lee JC, Kim MS, Park JW. YC-1: A potential anticancer drug targeting hypoxia-inducible factor 1. J Natl Cancer Inst. 2003;95:516–525.12671019Hirota SA, Beck PL, MacDonald JA. Targeting hypoxia-inducible factor-1 (HIF-1) signaling in therapeutics: Implications for the treatment of inflammatory bowel disease. Recent Pat Inflamm Allergy Drug Discov. 2009;3:1–16.19149741Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ. Vessel cooption, regression and growth in tumors mediated by angiopoietins and VEGF. Science. 1999;284:1994–1998.10373119Gravallese EM, Pettit AR, Lee R, Madore R, Manning C, Tsay A, Gaspar J, Goldring MB, Goldring SR, Oettgen P. Angiopoietin-1 is expressed in the synovium of patients with rheumatoid arthritis and is induced by tumour necrosis factor alpha. Ann Rheum Dis. 2003;62:100–107.PMC175443312525377Tran J, Master Z, Yu JL, Rak J, Dumont DJ, Kerbel RS. A role for surviving in chemoresistance of endothelial cells mediated by VEGF. Proc Natl Acad Sci USA. 2002;99:4349–4354.PMC12365111917134Shahrara S, Volin MV, Connors MA, Haines GK, Koch AE. Differential expression of the angiogenic Tie receptor family in arthritic and normal synovial tissue. Arthritis Res. 2002;4:201–208.PMC11102312010571Chen Y, Donnelly E, Kobayashi H, Debusk LM, Lin PC. Gene therapy targeting the Tie2 function ameliorates collagen-induced arthritis and protects against bone destruction. Arthritis Rheum. 2005;52:1585–1594.15880817Yoo SA, Yoon HJ, Kim HS, Chae CB, De Falco S, Cho CS, Kim WU. Role of placenta growth factor and its receptor flt-1 in rheumatoid inflammation: A link between angiogenesis and inflammation. Arthritis Rheum. 2009;60:345–354.19180491Kameda H, Ishigami H, Suzuki M, Abe T, Takeuchi T. Imatinib mesylate inhibits proliferation of rheumatoid synovial fibroblast-like cells and phosphorylation of Gab adapter proteins activated by platelet-derived growth factors. Clin Exp Immunol. 2006;144:335–341.PMC180965716634808Koyama K, Hatsushika K, Ando T, Sakuma M, Wako M, Kato R, Haro H, Sugiyama H, Hamada Y, Ogawa H, Nakao A. Imatinib mesylate both prevents and treats the arthritis induced by type II collagen antibody in mice. Mod Rheumatol. 2007;17:306–310.17694264Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J, Dzuiba J, Van Damme J, Walz A, Marriott D, Chan S-Y, Roczniak S, Shanafelt AB. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem. 1995;270:27348–27357.7592998Petit I, Jin D, Rafii S. The SDF-1-CXCR4 signaling pathway: A molecular hub modulating neo-angiogenesis. Trends Immunol. 2007;28:299–307.PMC295249217560169Pablos JL, Santiago B, Galindo M, Torres C, Brehmer M, Blanco FJ, Garcia-Lazaro FJ. Synoviocyte-derived CXCL12 is displayed on endothelium and induces angiogenesis in rheumatoid arthritis. J Immunol. 2003;170:2147–2152.12574387Calatozzolo C, Maderna E, Pollo B, Gelati M, Marras C, Silvani A, Croci D, Boiardi A, Salmaggi A. Prognostic value of CXCL12 expression in 40 low-grade oligodendrogliomas and oligoastrocytomas. Cancer Biol Ther. 2006;5:827–832.16760646Salcedo R, Ponce ML, Young HA, Wasserman K, Ward JM, Kleinman HK, Oppenheim JJ, Murphy WJ. Human endothelial cells express CCR2 and respond to MCP-1: Direct role of MCP-1 in angiogenesis and tumor progression. Blood. 2000;96:34–40.10891427Stamatovic SM, Keep RF, Mostarica-Stojkovic M, Andjelkovic AV. CCL2 regulates angiogenesis via activation of Ets-1 transcription factor. J Immunol. 2006;177:2651–2661.16888027Volin MV, Woods JM, Amin MA, Connors MA, Harlow LA, Koch AE. Fractalkine: A novel angiogenic chemokine in rheumatoid arthritis. Am J Pathol. 2001;159:1521–1526.PMC185049211583978Nanki T, Hayashida K, El-Gabalawy HS, Suson S, Shi K, Girschick HJ, Yavuz S, Lipsky PE. Stromal cell-derived factor-1-CXC chemokine receptor 4 interactions play a central role in CD4 + T-cell accumulation in rheumatoid arthritis synovium. J Immunol. 2000;165:6590–6598.11086103Wente MN, Keane MP, Burdick MD, Friess H, Büchler MW, Ceyhan GO, Reber HA, Strieter RM, Hines OJ. Blockade of the chemokine receptor CXCR2 inhibits pancreatic cancer cell-induced angiogenesis. Cancer Lett. 2006;241:221–227.16458421Zhang R, Tian L, Chen LJ, Hou JM, Li G, Li J, Zhang L, Chen XC, Luo F, Jiang Y, Wei YQ. Combination of MIG (CXCL9) chemokine gene therapy with low-dose cisplatin improves therapeutic efficacy against murine carcinoma. Gene Ther. 2006;13:1263–1271.16672984Yin Y, Huang L, Zhao X, Fang Y, Yu S, Zhao J, Cui B. AMD3100 mobilizes endothelial progenitor cells in mice, but inhibits its biological functions by blocking an autocrine/paracrine regulatory loop of stromal cell derived factor-1 in vitro. J Cardiovasc Pharmacol. 2007;50:61–67.17666917Madri JA, Williams KS. Capillary endothelial cell cultures: Phenotypic modulation by matrix components. J Cell Biol. 1983;97:153–165.PMC21124966190818Szekanecz Z, Szegedi G, Koch AE. Cellular adhesion molecules in rheumatoid arthritis. Regulation by cytokines and possible clinical importance. J Investig Med. 1996;44:124–135.8689407Imhof BA, Aurrand-Lions M. Adhesion mechanisms regulating the migration of monocytes. Nat Rev Immunol. 2004;4:432–444.15173832Koch AE, Halloran MM, Haskell CJ, Shah MR, Polverini PJ. Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1. Nature. 1995;376:517–519.7543654Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science. 1994;264:569–571.7512751Huang MT, Mason JC, Birdsey GM, Amsellem V, Gerwin N, Haskard DO, Ridley AJ, Randi AM. Endothelial intercellular adhesion molecule (ICAM)-2 regulates angiogenesis. Blood. 2005;106:1636–1643.15920013Naik TU, Naik MU, Naik UP. Junctional adhesion molecules in angiogenesis. Front Biosci. 2008;13:258–262.17981544Rabquer BJ, Pakozdi A, Michel JE, Gujar BS, Haines GK, III, Imhof BA, Koch AE. Junctional adhesion molecule C mediates leukocyte adhesion to rheumatoid arthritis synovium. Arthritis Rheum. 2008;58:3020–3039.PMC291102418821692Jacq L, Garnier S, Dieudé P, Michou L, Pierlot C, Migliorini P, Balsa A, Westhovens R, Barrera P, Alves H, Vaz C, Fernandes M, Pascual-Salcedo D, Bombardieri S, Dequeker J, Radstake TR, Van Riel P, van de Putte L, Lopes-Vaz A, Glikmans E, Barbet S, Lasbleiz S, Lemaire I, Quillet P, Hilliquin P, Teixeira VH, Petit-Teixeira E, Mbarek H, Prum B, Bardin T, Cornélis F. European Consortium on Rheumatoid Arthritis Families. The ITGAV rs3738919-C allele is associated with rheumatoid arthritis in the European Caucasian population: A family-based study. Arthritis Res Ther. 2007;9:R63.PMC220636417615072Shahrara S, Castro-Rueda HP, Haines GK, Koch AE. Differential expression of the FAK family kinases in rheumatoid arthritis and osteoarthritis synovial tissues. Arthritis Res Ther. 2007;9:R112.PMC221255917963503Kneilling M, Hültner L, Pichler BJ, Mailhammer R, Morawietz L, Solomon S, Eichner M, Sabatino J, Biedermann T, Krenn V, Weber WA, Illges H, Haubner R, Röcken M. Targeted mast cell silencing protects against joint destruction and angiogenesis in experimental arthritis in mice. Arthritis Rheum. 2007;56:1806–1816.17530709McCarey DW, Sattar N, McInnes IB. Do the pleiotropic effects of statins in the vasculature predict a role in inflammatory diseases? Arthritis Res Ther. 2005;7:55–61.PMC106533215743490Skotnicki JS, Zask A, Nelson FC, Albright JD, Levin JI. Design and synthetic considerations of matrix metalloproteinase inhibitors. Ann NY Acad Sci. 1999;878:61–72.10415720Szekanecz Z, Strieter RM, Koch AE. Cytokines in rheumatoid arthritis: Potential targets for pharmacological intervention. Drugs Aging. 1998;12:377–390.9606615Brennan F, Beech J. Update on cytokines in rheumatoid arthritis. Curr Opin Rheumatol. 2007;19:296–301.17414959Park CC, Morel JC, Amin MA, Connors MA, Harlow LA, Koch AE. Evidence of IL-18 as a novel angiogenic mediator. J Immunol. 2001;167:1644–1653.11466388Angiolillo AL, Kanegane H, Sgadari C, Reaman GH, Tosato G. Interleukin15 promotes angiogenesis in vivo. Biochem Biophys Res Commun. 1997;233:231–237.9144429Leibovich SJ, Polverini PJ, Shepard HM, Wiseman DM, Shively V, Nuseir N. Macrophage-induced angiogenesis is mediated by tumour necrosis factor-α. Nature. 1987;329:630–632.2443857Markham T, Mullan R, Golden-Mason L, Rogers S, Bresnihan B, Fitzgerald O, Fearon U, Veale DJ. Resolution of endothelial activation and down-regulation of Tie2 receptor in psoriatic skin after infliximab therapy. J Am Acad Dermatol. 2006;54:1003–1012.16713454Nakahara H, Song J, Sugimoto M, Hagihara K, Kishimoto T, Yoskizaki K, Nishimoto N. Anti-interleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis. Arthritis Rheum. 2003;48:1521–1529.12794819Numasaki M, Watanabe M, Suzuki T, Takahashi H, Nakamura A, McAllister F, Hishinuma T, Goto J, Lotze MT, Kolls JK, Sasaki H. IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR2-dependent angiogenesis. J Immunol. 2005;175:6177–6189.16237115Fearon U, Mullan R, Markham T, Connolly M, Sullivan S, Poole AR, FitzGerald O, Bresnihan B, Veale DJ. Oncostatin M induces angiogenesis and cartilage degradation in rheumatoid arthritis synovial tissue and human cartilage cocultures. Arthritis Rheum. 2006;54:3152–3162.17009243Amin MA, Volpert OV, Woods JM, Kumar P, Harlow LA, Koch AE. Migration inhibitory factor mediates angiogenesis via mitogen-activated protein kinase and phosphatidylinositol kinase. Circ Res. 2003;93:321–329.12881477Morand EF, Leech M, Bernhagen J. MIF: A new cytokine link between rheumatoid arthritis and atherosclerosis. Nat Rev Drug Discov. 2006;5:399–410.16628200Goedkoop AY, Kraan MC, Picavet DI, de Rie MA, Teunissen MB, Bos JD, Tak PP. Deactivation of endothelium and reduction in angiogenesis in psoriatic skin and synovium by low dose infliximab therapy in combination with stable methotrexate therapy. Arthritis Res Ther. 2004;6:R326–R334.PMC46487215225368Dessein PH, Joffe BI. Suppression of circulating interleukin-6 concentrations is associated with decreased endothelial activation in rheumatoid arthritis. Clin Exp Rheumatol. 2006;24:161–167.16762151Koch AE, Distler O. Vasculopathy and disordered angiogenesis in selected rheumatic diseases: Rheumatoid arthritis and systemic sclerosis. Arthritis Res Ther. 2007;9(Suppl. 2):S3.PMC207288917767741Haq A, El-Ramahi K, Al-Dalaan A. Serum and synovial fluid concentrations of endothelin-1 in patients with inflammatory arthritides. J Med. 1999;30:51–60.10515240Lee MS, Yoo SA, Cho CS, Suh PG, Kim WU, Ryu SH. Serum amyloid A binding to formyl peptide receptor-like 1 induces synovial hyperplasia and angiogenesis. J Immunol. 2006;177:5585–5594.17015746Mullan RH, Bresnihan B, Golden-Mason L, Markham T, O'Hara R, FitzGerald O, Veale DJ, Fearon U. Acute-phase serum amyloid A stimulation of angiogenesis, leukocyte recruitment and matrix degradation in rheumatoid arthritis through an NF-κB-dependent signal transduction pathway. Arthritis Rheum. 2006;54:105–114.16385502Hong KH, Cho ML, Min SY, Shin YJ, Yoo SA, Choi JJ, Kim WU, Song SW, Cho CS. Effect of interleukin-4 on vascular endothelial growth factor production in rheumatoid synovial fibroblasts. Clin Exp Immunol. 2007;147:573–579.PMC181049917302909Haas CS, Amin MA, Allen BB, Ruth JH, Haines GK, III, Woods JM, Koch AE. Inhibition of angiogenesis by interleukin-4 gene therapy in rat adjuvant-induced arthritis. Arthritis Rheum. 2006;54:2402–2414.16869003Haas CS, Amin MA, Ruth JH, Allen BL, Ahmed S, Pakozdi A, Woods JM, Shahrara S, Koch AE. In vivo inhibition of angiogenesis by interleukin-13 gene therapy in a rat model of rheumatoid arthritis. Arthritis Rheum. 2007;56:2535–2548.17665443Boulday G, Haskova Z, Reinders ME, Pal S, Briscoe DM. Vascular endothelial growth factor-induced signaling pathways in endothelial cells that mediate overexpression of the chemokine IFN-gamma-inducible protein of 10 kDa in vitro and in vivo. J Immunol. 2006;176:3098–3107.16493069Maurer AM, Zhou B, Han ZC. Roles of platelet factor 4 in hematopoiesis and angiogenesis. Growth Factors. 2006;24:242–252.17381065Vicari AP, Ait-Yahia S, Chemin K, Mueller A, Zlotnik A, Caux C. Antitumor effects of the mouse chemokine 6Ckine/SLC through angiostatic and immunological mechanisms. J Immunol. 2000;165:1992–2000.10925282Woods JM, Mogollon A, Amin MA, Martinez RJ, Koch AE. The role of COX-2 in angiogenesis and rheumatoid arthritis. Exp Mol Pathol. 2003;74:282–290.12782016D'Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA. 1994;91:4082–4085.PMC437277513432Komorowski J, Jerczyńska H, Siejka A, Barańska P, Ławnicka H, Pawłowska Z, Stepień H. Effect of thalidomide affecting VEGF secretion, cell migration, adhesion and capillary tube formation of human endothelial EA.hy926 cells. Life Sci. 2006;78:2558–2663.16310808Oliver SJ, Cheng TP, Banquerigo ML, Brahn E. The effect of thalidomide and two analogs on collagen induced arthritis. J Rheumatol. 1998;25:964–969.9598899Rico MC, Castaneda JL, Manns JM, Uknis AB, Sainz IM, Safadi FF, Popoff SN, Dela Cadena RA. Amelioration of inflammation, angiogenesis and CTGF expression ina n arthritis model by a TSP-1-derived peptide treatment. J Cell Physiol. 2007;211:504–512.17219411Park YW, Kang YM, Butterfield J, Detmar M, Goronzy JJ, Weyand CM. Thrombospondin 2 functions as an endogenous regulator of angiogenesis and inflammation in rheumatoid arthritis. Am J Pathol. 2004;165:2087–2098.PMC161870415579451Ingber D, Fujita T, Kishimoto S, Sudo K, Kanamaru T, Brem H, Folkman J. Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth. Nature. 1990;348:555–557.1701033Peacock DJ, Banquerigo ML, Brahn E. Angiogenesis inhibition suppresses collagen arthritis. J Exp Med. 1992;175:1135–1138.PMC21191841372645Hannig G, Bernier SG, Hoyt JG, Doyle B, Clark E, Karp RM, Lorusso J, Westlin WF. Suppression of inflammation and structural damage in experimental arthritis through molecular targeted therapy with PPI-2458. Arthritis Rheum. 2007;56:850–860.17328059O'Dell JR, Blakely KW, Mallek JA, Eckhoff PJ, Leff RD, Wees SJ, Sems KM, Fernandez AM, Palmer WR, Klassen LW, Paulsen GA, Haire CE, Moore GF. Treatment of early seropositive rheumatoid arthritis: A two-year, double-blind comparison of minocycline and hydroxychloroquine. Arthritis Rheum. 2001;44:2235–2241.11665963Stone M, Fortin PR, Pacheco-Tena C, Inman RD. Should tetracycline treatment be used more extensively for rheumatoid arthritis? J Rheumatol. 2003;30:2112–2122.14528503Ogrendik M. Effects of clarithromycin in patients with active rheumatoid arthritis. Curr Med Res Opin. 2007;23:515–522.17355733Nemoto K, Mae T, Abe F, Takeuchi T. Successful treatment with a novel immunosuppressive agent, deoxyspergualin, in type II collagen-induced arthritis in mice. Ann NY Acad Sci. 1993;685:148–154.8363219Bernier SG, Lazarus DD, Clark E, Doyle B, Labenski MT, Thompson CD, Westlin WF, Hannig G. A methionine aminopeptidase-2 inhibitor, PPI-2458, for the treatment of rheumatoid arthritis. Proc Natl Acad Sci USA. 2004;101:10768–10773.PMC49000915249666Yin G, Liu W, An P, Li P, Ding I, Planelles V, Schwarz EM, Min W. Endostatin gene transfer inhibits joint angiogenesis and pannus formation in inflammatory arthritis. Mol Ther. 2002;5:547–554.11991745Takahashi H, Kato K, Miyake K, Hirai Y, Yoshino S, Shimada T. Adeno-associated virus vector-mediated anti-angiogenic gene therapy for collagen-induced arthritis in mice. Clin Exp Rheumatol. 2005;23:455–461.16095112Yue L, Shen YX, Feng LJ, Chen FH, Yao HW, Liu LH, Wu Q, Wang H. Blockage of the formation of new blood vessels by recombinant human endostatin contributes to the regression of rat adjuvant arthritis. Eur J Pharmacol. 2007;567:166–170.17490637Huang XY, Chen FH, Li J, Xia LJ, Liu YJ, Zhang XM, Yuan FL. Mechanism of fibroblast-like synoviocyte apoptosis induced by recombinant human endostatin in rats with adjuvant arthritis. Anat Rec (Hoboken) 2008;291:1029–1037.18509875Kurosaka D, Yoshida K, Yasuda J, Yasuda C, Noda K, Furuya K, Ukichi T, Kingetsu I, Joh K, Yamaguchi N, Saito S, Yamada A. The effect of endostatin evaluated in an experimental animal model of collagen-induced arthritis. Scand J Rheumatol. 2007;36:434–441.18092264Kurosaka D, Yasuda J, Yoshida K, Yasuda C, Toyokawa Y, Yokoyama T, Kingetsu I, Yamada A. Kinetics of circulating endothelial progenitor cells in mice with type II collagen arthritis. Blood Cells Mol Dis. 2005;35:236–240.16023391Sumariwalla PF, Cao Y, Wu HL, Feldmann EM, Paleolog E. The angiogenesis inhibitor protease-activated kringles 1-5 reduces the severity of murine collagen-induced arthritis. Arthritis Res Ther. 2003;5:R32–R39.PMC15442812716451Wang CR, Chen SY, Shiau AL, Wu CL, Jou IM, Chao L, Chao J. Upregulation of kallistatin expression in rheumatoid joints. J Rheumatol. 2007;34:2171–2176.17937475Mundel TM, Kalluri R. Type IV collagen-derived angiogenesis inhibitors. Microvasc Res. 2007;74:85–89.PMC399872117602710Mabjeesh NJ, Escuin D, LaVallee TM, Pribluda VS, Swartz GM, Johnson MS, Willard MT, Zhong H, Simons JW, Giannakakou P. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell. 2003;3:363–375.12726862Brahn E, Banquerigo ML, Lee JK, Park EJ, Fogler WE, Plum SM. An angiogenesis inhibitor, 2-methoxyestradiol involutes rat collagen-induced arthritis and suppresses gene expression of synovial vascular endothelial growth factor and basic fibroblast growth factor. J Rheumatol. 2008;35:2119–2128.18792999Issekutz AC, Sapru K. Modulation of adjuvant arthritis in the rat by 2-methoxyestradiol: An effect independent of an anti-angiogenic action. Int Immunopharmacol. 2008;8:708–716.18387513
194826232010061620240312
1945-0508112009Jun01Frontiers in bioscience (Elite edition)Front Biosci (Elite Ed)Chemokines and angiogenesis in rheumatoid arthritis.445144-51In rheumatoid arthritis, chemokines mediate the migration of inflammatory leukocytes into the synovium. Among the four known chemokine families, CXC, CC chemokines and fractalkine seem to be of outstanding importance in this process. Angiogenesis, the formation of new vessels, is also important during the perpetuation of inflammation underlying rheumatoid arthritis. In this review, authors discuss the role of the most important chemokines and chemokine receptors in arthritis-associated neovascularization. The process and regulation of angiogenesis are described in this context as well. Apart from discussing the pathogenic role of chemokines and chemokine receptors in arthritic vessel formation, authors also review the important relevance of chemokines and angiogenesis for therapeutic intervention.SzekaneczZoltanZDivision of Rheumatology, Third Department of Medicine, University of Debrecen Medical and Health Sciences Center, Debrecen, H-4004, Hungary. szekanecz@iiibel.dote.huPakozdiAngelaASzentpeteryAgnesABesenyeiTimeaTKochAlisa EAEengR01 AI040987-08AINIAID NIH HHSUnited StatesR01 AI040987AINIAID NIH HHSUnited StatesR01 AR048267ARNIAMS NIH HHSUnited StatesAI-40987AINIAID NIH HHSUnited StatesAR-048267ARNIAMS NIH HHSUnited StatesR01 AR048267-05ARNIAMS NIH HHSUnited StatesJournal ArticleResearch Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov'tResearch Support, U.S. Gov't, Non-P.H.S.Review20090601
SingaporeFront Biosci (Elite Ed)1014852401945-04940Chemokines0Receptors, ChemokineIMArthritis, RheumatoidimmunologyphysiopathologyChemokinesimmunologyHumansNeovascularization, PathologicimmunologyReceptors, ChemokineimmunologySynovial Membraneimmunologypathology
20096290200962902010617602010614epublish19482623NIHMS206813PMC288439410.2741/E55Koch AE. Angiogenesis: implications for rheumatoid arthritis. Arthritis Rheum. 1998;41:951–962.9627005Szekanecz Z, Gaspar L, Koch AE. Angiogenesis in rheumatoid arthritis. Front Biosci. 2005;10:1739–1753.15769663Walsh DA. Angiogenesis and arthritis. Rheumatology (Oxford) 1999;38:103–112.10342621Paleolog EM, Fava RA. Angiogenesis in rheumatoid arthritis: implications for future therapeutic strategies. Springer Semin Immunopathol. 1998;20:73–94.9836370Szekanecz Z, Koch AE. Chemokines and angiogenesis. Curr Opin Rheumatol. 2001;13:202–208.11333349Rudolph EH, Woods JM. Chemokine expression and regulation of angiogenesis in rheumatoid arthritis. Curr Pharm Des. 2005;11:613–631.15720278Auerbach W, Auerbach R. Angiogenesis inhibition. a review. Pharmacol Ther. 1994;63:265–311.7530374Freedman SB, Isner JM. Therapeutic angiogenesis for ischemic cardiovascular disease. J Mol Cell Cardiol. 2001;33:379–393.11181008Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, William M, Oz MC, Hicklin DJ, Witte L, Moore MA, Rafii S. Expression of VEGFR-2 and AC133 by circulating human CD34 (+) cells identifies a population of functional endothelial precursors. Blood. 2000;95:952–958.10648408Grisar J, Aletaha D, Steiner CW, Kapral T, Steiner S, Seidinger D, Weigel G, Schwarzinger I, Wolozcszuk W, Steiner G, Smolen JS. Depletion of endothelial progenitor cells in the peripheral blood of patients with rheumatoid arthritis. Circulation. 2005;111:204–211.15642766Szekanecz Z, Szücs G, Szanto S, Koch AE. Chemokines in rheumatic diseases. Curr Drug Targ. 2006;7:91–102.16454702Szekanecz Z, Koch AE. Macrophages and their products in rheumatoid arthritis. Curr Opin Rheumatol. 2007;19:289–295.17414958Imhof BA, Aurrand-Lions M. Adhesion mechanisms regulating the migration of monocytes. Nat Rev Immunol. 2004;4:432–444.15173832Szekanecz Z, Kim J, Koch AE. Chemokines and chemokine receptors in rheumatoid arthritis. Sem Immunol. 2002;399:1–7.12495637Mehrad B, Keane MP, Strieter RM. Chemokines as mediators of angiogenesis. Thromb Haemost. 2007;97:755–762.PMC335352717479186Koch AE, Polverini PJ, Leibovich SJ. Stimulation of neovascularization by human rheumatoid synovial tissue macrophages. Arthritis Rheum. 1986;29:471–479.2423091Buckley CD, Amft N, Bradfield PF, Pilling D, Ross E, Arenzana-Seisdedos F, Amara A, Curnow SJ, Lord RM, Scheel-Toellner D, Salmon M. Persistent induction of the chemokine receptor CXCR4 by TGF-beta 1 on synovial T cells contributes to their accumulation within the rheumatoid synovium. J Immunol. 2000;165:3423–3429.10975862Nanki T, Hayashida K, El-Gabalawy HS, Suson S, Shi K, Girschick HJ, Yavuz S, Lipsky PE. Stromal cell-derived factor-1-CXC chemokine receptor 4 interactions play a central role in CD4+ T-cell accumulation in rheumatoid arthritis synovium. J Immunol. 165:6590–6598.11086103Manzo A, Paoletti S, Carulli M, Blades MC, Barone F, Yanni G, Fitzgerald O, Bresnihan B, Caporali R, Montecucco C. Systematic microanatomical analysis of CXCL13 and CCL21 in situ production and progressive lymphoid organization in rheumatoid synovitis. Eur J Immunol. 2005;35:1347–1359.15832291Li T, Zhong J, Chen Y, Qiu X, Zhang T, Ma D, Han W. Expression of chemokine-like factor 1 is upregulated during T lymphocyte activation. Life Sci. 2006;79:519–524.16522323Salcedo R, Ponce ML, Young HA, Wasserman K, Ward JM, Kleinman HK, Oppenheim JJ, Murphy WJ. Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood. 2000;96:34–40.10891427Stamatovic SM, Keep RF, Mostarica-Stojkovic M, Andjelkovic AV. CCL2 regulates angiogenesis via activation of Ets-1 transcription factor. J Immunol. 2006;177:2651–2661.16888027Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, Greaves DR, Zlotnik A, Schall TJ. A new class of membrane bound chemokine with a X3C motif. Nature. 1997;385:640–644.9024663Ruth JH, Volin MV, Haines GK, III, Koch AE. Fractalkine, a novel chemokine in rheumatoid arthritis and rat adjuvant-induced arthritis. Arthritis Rheum. 2001;44:1568–1581.11465708Volin MV, Woods JM, Amin MA, Connors MA, Harlow LA, Koch AE. Fractalkine: a novel angiogenic chemokine in rheumatoid arthritis. Am J Pathol. 2001;159:1521–1526.PMC185049211583978Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity. 2000;12:121–127.10714678Walz A, Kunkel SL, Strieter RM. C-X-C chemokines – an overview. In: Koch AE, Strieter RM, editors. Chemokines in Disease. Austin: RG Landes Company; 1996. pp. 1–25.Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J, Dzuiba J, Van Damme J, Walz A, Marriott D, Chan SY, Roczniak S, Shanafelt AB. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem. 1995;270:27348–27357.7592998Castor CW, Andrews PC, Swartz RD, Bignall MC, Aaron BP. The origin, variety, distribution, and biologic fate of connective tissue activating peptide-III isoforms: characteristics in patients with rheumatic, renal, and arterial disease. Arthritis Rheum. 1993;36:1142–1153.8343190Caunt M, Hu L, Tang T, Brooks PC, Ibrahim S, Karpatkin S. Growth-regulated oncogene is pivotal in thrombin-induced angiogenesis. Cancer Res. 2006;66:4125–4132.16618733Wang D, Wang H, Brown J, Daikoku T, Ning W, Shi Q, Richmond A, Strieter R, Dey SK, DuBois RN. CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. J Exp Med. 2006;203:941–951.PMC211827316567391Boulday G, Haskova Z, Reinders ME, Pal S, Broiscoe DM. Vascular endothelial growth factor-induced signaling pathways in endothelial cells that mediate overexpression of the chemokine IFN-gamma-inducible protein of 10 kDa in vitro andin vivo. J Immunol. 2006;176:3098–3107.16493069Bodnar RJ, Yates CC, Wells A. IP-10 blocks vascular endothelial growth factor-induced endothelial cell motility and tube formation via inhibition of calpain. Circ Res. 2006;98:617–625.PMC382626416484616Maurer AM, Zhou B, Han ZC. Roles of platelet factor 4 in hematopoiesis and angiogenesis. Growth Factors. 2006;24:242–252.17381065Vandercappellen J, Noppen S, Verbeke H, Put W, Conings R, Gouwy M, Schutyser E, Proost P, Sciot R, Geboes K, Opdenakker G, Van Damme J, Struyf S. Stimulation of angiostatic platelet facor-4 variant (CXCL4L1/PF-4var) versus inhibition of angiogenic granulocyte chemotactic protein-2 (CXCL6/GCP-2) in normal and tumoral mesenchymal cells. J Leukoc Biol. 2007 Sep 7; (Epub ahead of print)17827342Struyf S, Burdick MD, Peeters E, van den Broeck K, Dillen C, Proost P, van Damme J, Strieter RM. Platelet factor-4 variant chemokine CXCL4L1 inhibits melanoma and lung carcinoma growth and metastsis by preventing angiogenesis. Cancer Res. 2007;67:5940–5948.17575164Pablos JL, Santiago B, Galindo M, Torres C, Brehmer M, Blanco FJ, Garcia-Lazaro FJ. Synoviocyte-derived CXCL12 is displayed on endothelium and induces angiogenesis in rheumatoid arthritis. J Immunol. 2003;170:2147–2152.12574387Salcedo R, Wasserman K, Young HA, Grimm MC, Howard OM, Anver MR, Kleinman HK, Murphy WJ, Oppenheim JJ. Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: In vivo neovascularization induced by stromal-derived factor-1alpha. Am J Pathol. 1999;154:1125–1135.PMC186656310233851Petit I, Jin D, Rafii S. The SDF-1-CXCR4 signaling pathway. a molecular hub modulating neo-angiogenesis. Trends Immunol. 2007;28:299–307.PMC295249217560169Liang Z, Brooks J, Willard M, Liang K, Yoon Y, Kang S, Shim H. CXCR4/CXCL12 axis promotes VEGF-mediated tumor angiogenesis through Akt signaling pathway. Biochem Biophys Res Commun. 2007;359:716–722.PMC198678817559806Deshane J, Chen S, Caballero S, Grochot-Przeczek A, Was H, Li Calzi S, Lach R, Hock TD, Chen B, Hill-Kapturczak N, Siegal GP, Dulak J, Jozkowicz A, Grant MB, Agarwal A. Stromal cell-derived factor 1 promotes angiogenesis via a heme oxygenase 1-dependent mechanism. J Exp Med. 2007;204:605–618.PMC185543717339405Tan Y, Shao H, Eton D, Yang Z, Alonso-Diaz L, Zhang H, Schulick A, Livingstone AS, Yu H. Stromal cell-derived factor-1 enhances pro-angiogenic efft of granulocyte colony stimulating factor. Cardiovasc Res. 2007;73:823–832.PMC224325717258698Calatozzolo C, Maderna E, Pollo B, Gelati M, Marras C, Silvani A, Croci D, Boiardi A, Salmaggi A. Prognostic value of CXCL12 expression in 40 low-grade oligodendrogliomas and oligoastrocytomas. Cancer Biol Ther. 2006;5:827–832.16760646Jin DK, Shido K, Kopp HG, Petit I, Shmelkov SV, Young LM, Hooper AT, Raffii S. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med. 2006;12:557–567.PMC275428816648859Burns JM, Summers BC, Wang Y, Melikian A, Miao Z, Kuo CJ, Wei K, Wright K, Howard MC, Schall TJ. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion and tumor development. J Exp Med. 2006;203:2201–2213.PMC211839816940167Ma J, Wang Q, Fei T, Han JD, Chen YG. MCP-1 mediates TGF-beta-induced angiogenesis by stimulating vascular smooth muscle cell migration. Blood. 2007;109:987–994.17032917Fujii T, Yonemitsu Y, Onimaru M, Tanii M, Inoue M, Hasegawa M, Kuwano H, Sueishi K. Nonendothelial mesenchymal cell-derived MCP-1 is required for FGF-2 mediated therapeutic neovascularization. Arterioscler Thromb Vasc Biol. 2006;26:2483–2489.16960104Son KN, Hwang J, Kwon BS, Kim J. Human CC chemokine CCL23 enhances expression of matrix metalloproteinase-2 and invasion of vascular endothelial cells. Biochem Biophys Res Commun. 2006;340:498–504.16378600Vicari AP, Ait-Yahia S, Chemin K, Mueller A, Zlotnik A, Caux C. Antitumor effects of the mouse chemokine 6Ckine/SLC through angiostatic and immunological mechanisms. J Immunol. 2000;165:1992–2000.10925282Lesnik P, Haskell CA, Charo IF. Decreased atherosclerosis in CX3CR1 −/− mice reveals a role for fractalkine in atherogenesis. J Clin Invest. 2003;111:333–340.PMC15184912569158McDermott DH, Fong AM, Yang Q. Chemokine receptor mutant CX3CR1-M280 has impaired adhesive function and correlates with protection from cardiovascular disease in humans. J Clin Invest. 2003;111:1241–1250.PMC15293512697743Borzi RM, Mazzetti I, Cattini L. Human chondrocytes express functional chemokine receptors and release matrix-degrading enzymes in response to C-X-C and C-C chemokines. Arthritis Rheum. 2000;43:1734–1741.10943863Zagzag D, Lukyanov Y, Lan L, Ali MA, Esencay M, Mendez O, Yee H, Voura EB, Newcomb EW. Hypoxia-inducible factor 1 an VEGF upregulate CXCR4 in glioblastoma. implications for angiogenesis and glioma cell invasion. Lab Invest. 2006;86:1221–1232.17075581Ochoa O, Sun D, Reyes-Reyna SM, Waite LL, Michalek JE, McManus LM, Shireman PK. Delayed angiogenesis and VEGF production in CCR2−/− mice during impaired skeletal muscle regeneration. Am J Physiol Regul Integr Comp Physiol. 2007;293:R651–R661.17522124Patterson AM, Siddall H, Chamberlain G. Expression of the Duffy antigen/receptor for chemokines (DARC) by the inflamed synovial endothelium. J Pathol. 2002;197:108–116.12081195Wang J, Ou ZL, Hou YF, Luo JM, Shen ZZ, Ding J, Shao ZM. Enhanced expression of Duffy antigen receptor for chemokines by breast cancer cells attenuates growth and metastasis potential. Oncogene. 2006;25:7201–7211.16785997Amin MA, Mansfield PJ, Pakozdi A, Campbell PL, Ahmed S, Martinez RJ, Koch AE. Interleukin-18 induces angiogenic factors in rheumatoid arthritis synovial tissue fibroblasts via distinct signaling pathways. Arthritis Rheum. 2007;56:1787–1797.17530707McInnes IB. Cytokines. In: Harris ED jr, Budd RC, Firestein GS, Genovese MC, Sergent JS, Ruddy S, Sledge CB, editors. Kelley’s Textbook of Rheumatology. 7. Chapter 7. Philadelphia: Elsevier Saunders; 2005. pp. 379–389.Pakozdi A, Amin MA, Haas CS, Martinez RJ, Haines GK, 3rd, Santos LL, Morand EF, David JR, Koch AE. Macrophage migration inhibitory factor. a mediator of matrix metalloproteinase-2 production in rheumatoid arthritis. Arthritis Res Ther. 2006;8:R132.PMC177938116872482Santos LL, Morand EF. The role of macrophage migration inhibitory factor in the inflammatory response and rheumatoid arthritis. Wien Med Wochenschr. 2006;156:11–18.16465610Kim HR, Park MK, Cho ML, Yoon CH, Lee SH, Park SH, Leng L, Bucala R, Kang I, Choe J, Kim HY. Macrophage migration inhibitory factor upregulates angiogenic factors and correlates with clinical measures in rheumatoid arthritis. J Rheumatol. 2007;34:927–936.17407222Haas CS, Amin MA, Ruth JH, Allen BL, Ahmed S, Pakozdi A, Woods JM, Shahrara S, Koch AE. In vivo inhibition of angiogenesis by interleukin-13 gene therapy in a rat model of rheumatoid arthritis. Arthritis Rheum. 2007;56:2535–2548.17665443Szekanecz Z, Strieter RM, Koch AE. Cytokines in rheumatoid arthritis. potential targets for pharmacological intervention. Drugs Aging. 1998;12:377–390.9606615Szekanecz Z, Haines GK, Lin TR, Harlow LA, Goerdt S, Rayan G, Koch AE. Differential distribution of intercellular adhesion molecules (ICAM-1, ICAM-2 and ICAM-3), and the MS-1 antigen in normal and diseased human synovia. Arthritis Rheum. 1994;37:221–231.8129777Loetscher P, Dewald B, Baggiolini M, Seitz M. Monocyte chemoattractant protein 1 and interleukin 8 production by rheumatoid synoviocytes: effects of anti-rheumatic drugs. Cytokine. 1994;6:162–170.8031999Seitz M, Dewald B, Gerber N, Baggiolini M. Enhanced production of neutrophil-activating peptide-1/interleukin-8 in rheumatoid arthritis. J Clin Invest. 1991;87:463–469.PMC2950981899427Lopez-Armada MJ, Sanchez-Pernaute O, Largo R, Diez-Ortego I, Palacios I, Egido J, Herrero-Beaumont G. Modulation of cell recruitment by anti-inflammatory agents in antigen-induced arthritis. Ann Rheum Dis. 2002;61:1027–1030.PMC175394012379530Volin MV, Harlow LA, Woods JM, Campbell PL, Amin MA, Tokuhira M, Koch AE. Treatment with sulfasalazine or sulfapyridine, but not 5-aminosalicyclic acid, inhibits basic fibroblast growth factor-induced endothelial cell chemotaxis. Arthritis Rheum. 1999;42:1927–1935.10513809Taylor PC, Peters AM, Paleolog E, Chapman PT, Elliott MJ, McCloskey R, Feldmann M, Maini RN. Reduction of chemokine levels and leukocyte traffic to joints by tumor necrosis factor alpha blockade in patients with rheumatoid arthritis. Arthritis Rheum. 2000;43:38–47.10643698Klimiuk PA, Sierakowski S, Domyslawska I, Chwiecko J. Regulation of serum chemokines following infliximab therapy in patients with rheumatoid arthritis. Clin Exp Rheumatol. 2006;24:529–533.17181921Zhang R, Tian L, Chen LJ, Hou JM, Li G, Li J, Zhang L, Chen XC, Luo F, Jiang Y, Wei YQ. Combination of MIG (CXCL9) chemokine gene therapy with low-dose cisplatin improves therapeutic efficacy against murine carcinoma. Gene Ther. 2006;13:1263–1271.16672984Wente MN, Keane MP, Burdick MD, Friess H, Buchler MW, Ceyhan GO, Reber HA, Strieter RM, Hines OJ. Blockade of the chemokine receptor CXCR2 inhibits pancreatic cancer cell-induced angiogenesis. Cancer Lett. 2006;241:221–227.16458421
178939992007103020220408
0077-892311082007JunAnnals of the New York Academy of SciencesAnn N Y Acad SciIncreased production of the soluble tumor-associated antigens CA19-9, CA125, and CA15-3 in rheumatoid arthritis: potential adhesion molecules in synovial inflammation?359371359-71Some tumor-associated antigens (TAAs) are expressed on inflammatory cells. We previously detected carcinoembryonic antigen (CEA; CD66) in the rheumatoid (RA) synovium. The production of CEA, CA19-9, CA125, and CA15.3, may be increased in patients with RA, scleroderma, lupus, and Sjögren's syndrome (SS). Some of these TAAs contain sialylated carbohydrate motifs and they are involved in tumor-associated cell adhesion and metastasis. We assessed levels of TAAs in the sera of RA patients and healthy subjects. Serum TAA levels were correlated with disease markers including serum rheumatoid factor (RF), C-reactive protein (CRP), and anti-CCP antibody levels, DAS28, age disease duration. TAAs including CEA, CA15-3, CA72-4, CA125, and CA19-9, and neuron-specific enolase (NSE) were assessed by immunoassay in the sera of 75 patients with RA and 50 age- and sex-matched healthy controls. Normal upper limits for these TAAs were 3.4 microg/L, 25 kU/L, 6.9 kU/L, 35 kU/L, 34 kU/L, and 16.3 microg/L, respectively. There were significantly more RA patients showing abnormally high levels of CA125 (10.8% versus 7.1%), CA19-9 (8.1% versus 0%), and CA15-3 (17.6% versus 14.3%) in comparison to controls (P < 0.05). The mean absolute serum levels of CA125 (23.9 +/- 1.8 versus 16.8 +/- 2.2 kU/L) and CA19-9 (14.2 +/- 1.2 versus 10.5 +/- 1.6 kU/L) were also significantly higher in RA compared to controls (P < 0.05). Among RA patients, serum CEA showed significant correlation with RF (r = 0.270; P < 0.05). None of the assessed TAAs showed any correlation with CRP, anti-CCP, DAS28, age or disease duration. The concentration of some TAAs may be elevated in the sera of patients with established RA in comparison to healthy subjects. CEA, CA19-9, CA125, and CA15-3 contain carbohydrate motifs and thus they may be involved in synovitis-associated adhesive events. Furthermore, some TAAs, such as CEA, may also correlate with prognostic factors, such as serum RF levels.SzekaneczEvaEDepartment of Oncology, University of Debrecen Medical and Health Science Center, Debrecen, Hungary.SándorZsuzsaZAntal-SzalmásPéterPSoósLillaLLakosGabriellaGBesenyeiTimeaTSzentpéteryAgnesASimkovicsEniköESzántóJánosJKissEmeseEKochAlisa EAESzekaneczZoltánZengJournal ArticleResearch Support, Non-U.S. Gov't
United StatesAnn N Y Acad Sci75068580077-89230Autoantibodies0CA-125 Antigen0CA-19-9 Antigen0Cell Adhesion Molecules0Mucin-19007-41-4C-Reactive Protein9009-79-4Rheumatoid FactorIMAdultAgedArthritis, RheumatoidbloodimmunologymetabolismAutoantibodiesbloodC-Reactive ProteinanalysisCA-125 AntigenbloodCA-19-9 AntigenbloodCell Adhesion MoleculesbloodmetabolismEnzyme-Linked Immunosorbent AssayFemaleHumansMaleMiddle AgedMucin-1bloodRheumatoid FactorbloodSynovitisbloodmetabolism
2007926902007103190200792690ppublish1789399910.1196/annals.1422.037
178939982007103020190616
0077-892311082007JunAnnals of the New York Academy of SciencesAnn N Y Acad SciAccelerated atherosclerosis in rheumatoid arthritis.349358349-58Cardiovascular disease is a leading cause of mortality in rheumatoid arthritis (RA). Endothelial dysfunction often precedes manifest atherosclerosis. Both traditional, Framingham risk factors and inflammation-associated factors are involved in RA-associated atherosclerosis. Among imaging techniques, the early determination of common carotid intima-media thickness (ccIMT), flow-mediated vasodilation (FMD), and nitroglycerine-mediated vasodilation (NMD) may be useful to determine atherosclerosis and endothelial dysfunction. We and others found increased ccIMT and impaired FMD in RA patients. Among immunological and metabolic laboratory markers, anticyclic citrullinated peptide (anti-CCP) antibodies, IgM rheumatoid factor, circulating immune complexes, pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6), Th0/Th1 T cells, homocysteine, dyslipidemia, decreased folate and vitamin B12 production, and impaired paraoxonase activity may all be involved in the development of vascular disease in RA. The early diagnosis of endothelial dysfunction and atherosclerosis, active immunosuppressive treatment, the use of drugs that control atherosclerosis, changes in sedentary lifestyle, and the close follow-up of RA patients may help to minimize cardiovascular risk in these individuals.SzekaneczZoltánZDivision of Rheumatology, Third Department of Medicine, University of Debrecen Medical and Health Science Center, Debrecen, Hungary. szekanecz@iiibel.dote.huKerekesGyörgyGDérHenriettHSándorZsuzsaZSzabóZoltánZVégváriAnikóASimkovicsEniköESoósLillaLSzentpéteryAgnesABesenyeiTimeaTSzücsGabriellaGSzántóSándorSTamásiLászlóLSzegediGyulaGShoenfeldYehudaYSoltészPálPengJournal ArticleResearch Support, Non-U.S. Gov'tReview
United StatesAnn N Y Acad Sci75068580077-8923IMArthritis, RheumatoidcomplicationsAtherosclerosiscomplicationsdiagnosispathologyCardiovascular DiseasescomplicationsdiagnosispathologyEndothelium, VascularpathologyHumansRisk Factors46
2007926902007103190200792690ppublish1789399810.1196/annals.1422.036
trying2...
Publications by Timea Besenyei | LitMetric

Publications by authors named "Timea Besenyei"

Objectives: Impaired vascular pathophysiology and increased cardiovascular (CV) mortality are associated with rheumatoid arthritis (RA). To date, no genomic analysis of RA- and RA treatment-related vascular pathophysiology has been published. In this pilot study, we performed gene expression profiling in association with vascular pathophysiology in RA patients.

View Article and Find Full Text PDF

Objective: To identify epigenetic factors that are implicated in the pathogenesis of rheumatoid arthritis (RA), and to explore the therapeutic potential of the targeted inhibition of these factors.

Methods: Polymerase chain reaction (PCR) arrays were used to investigate the expression profile of genes that encode key epigenetic regulator enzymes. Mononuclear cells from RA patients and mice were monitored for gene expression changes, in association with arthritis development in murine models of RA.

View Article and Find Full Text PDF

Pharmacogenetics and pharmacogenomics deal with possible associations of a single genetic polymorphism or those of multiple gene profiles with responses to drugs. In rheumatology, genes and gene signatures may be associated with altered efficacy and/or safety of anti-inflammatory drugs, disease-modifying antirheumatic drugs (DMARDs) and biologics. In brief, genes of cytochrome P450, other enzymes involved in drug metabolism, transporters and some cytokines have been associated with responses to and toxicity of non-steroidal anti-inflammatory drugs, corticosteroids and DMARDs.

View Article and Find Full Text PDF

The "Bermuda triangle" of genetics, environment and autoimmunity is involved in the pathogenesis of rheumatoid arthritis (RA). Various aspects of genetic contribution to the etiology, pathogenesis and outcome of RA are discussed in this review. The heritability of RA has been estimated to be about 60 %, while the contribution of HLA to heritability has been estimated to be 11-37 %.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a polygenic autoimmune disease primarily affecting the synovial joints. Numerous animal models show similarities to RA in humans; some of them not only mimic the clinical phenotypes but also demonstrate the involvement of homologous genomic regions in RA. This paper compares corresponding non-MHC genomic regions identified in rodent and human genome-wide association studies (GWAS).

View Article and Find Full Text PDF

Objective: To determine whether myeloid cells (such as granulocytes) present in the synovial fluid (SF) of arthritic joints have an impact on adaptive immunity. Specifically, we investigated the effects of SF cells harvested from the joints of mice with proteoglycan-induced arthritis (PGIA), on dendritic cell (DC) maturation and antigen-specific T cell proliferation.

Methods: We monitored DC maturation (MHCII and CD86 expression) by flow cytometry upon coculture of DCs with SF cells or spleen myeloid cells from mice with PGIA.

View Article and Find Full Text PDF

Purpose Of Review: Angiogenesis is the formation of new capillaries from pre-existing vessels, whereas vasculogenesis is de-novo capillary formation from endothelial precursor cells (EPCs). Current understanding of the role of angiogenesis and vasculogenesis in rheumatoid arthritis (RA) and possibilities of therapeutic intervention should be summarized.

Recent Findings: There have been many recent studies on the role of the hypoxia and hypoxia-inducible factor (HIF)-vascular endothelial growth factor (VEGF)-angiopoietin axis in angiogenesis associated with RA.

View Article and Find Full Text PDF

Angiogenesis is the formation of new capillaries from pre-existing vessels. A number of soluble and cell-bound factors may stimulate neovascularization. The perpetuation of angiogenesis involving numerous soluble and cell surface-bound mediators has been associated with rheumatoid arthritis (RA).

View Article and Find Full Text PDF

Vasculogenesis is the generation of vessels from endothelial progenitor cells (EPCs). Attenuated numbers and function of EPCs associated with defective vasculogenesis are present in rheumatoid arthritis (RA), scleroderma and other autoimmune-inflammatory diseases, which have significant relevance for increased cardio- and cerebrovascular morbidity and mortality in arthritis [–5]. Stimulation of EPCs and vasculogenesis may be beneficial to prevent and manage atherosclerosis related to arthritis.

View Article and Find Full Text PDF

Angiogenesis is the formation of new capillaries from pre-existing vessels. A number of soluble and cell-bound factors may stimulate neovascularization. The perpetuation of angiogenesis involving numerous soluble and cell surface-bound mediators has been associated with rheumatoid arthritis (RA).

View Article and Find Full Text PDF

In rheumatoid arthritis, chemokines mediate the migration of inflammatory leukocytes into the synovium. Among the four known chemokine families, CXC, CC chemokines and fractalkine seem to be of outstanding importance in this process. Angiogenesis, the formation of new vessels, is also important during the perpetuation of inflammation underlying rheumatoid arthritis.

View Article and Find Full Text PDF

Some tumor-associated antigens (TAAs) are expressed on inflammatory cells. We previously detected carcinoembryonic antigen (CEA; CD66) in the rheumatoid (RA) synovium. The production of CEA, CA19-9, CA125, and CA15.

View Article and Find Full Text PDF

Cardiovascular disease is a leading cause of mortality in rheumatoid arthritis (RA). Endothelial dysfunction often precedes manifest atherosclerosis. Both traditional, Framingham risk factors and inflammation-associated factors are involved in RA-associated atherosclerosis.

View Article and Find Full Text PDF