Memory is composed of various phases including cellular consolidation, systems consolidation, reconsolidation, and extinction. In the last few years it has been shown that simple association memories can be encoded by a subset of the neuronal population called engram cells. Activity of these cells is necessary and sufficient for the recall of association memory.
View Article and Find Full Text PDFThe anterior cingulate cortex (ACC) is activated in both acute and chronic pain. In this Review, we discuss increasing evidence from rodent studies that ACC activation contributes to chronic pain states and describe several forms of synaptic plasticity that may underlie this effect. In particular, one form of long-term potentiation (LTP) in the ACC, which is triggered by the activation of NMDA receptors and expressed by an increase in AMPA-receptor function, sustains the affective component of the pain state.
View Article and Find Full Text PDFBackground: Transcriptional repressor DREAM (downstream regulatory element antagonist modulator) is a Ca(2+)-binding protein that regulates Ca(2+) homeostasis through gene regulation and protein-protein interactions. It has been shown that a dominant active form (daDREAM) is implicated in learning-related synaptic plasticity such as LTP and LTD in the hippocampus. Neuronal spines are reported to play important roles in plasticity and memory.
View Article and Find Full Text PDFChanges in nuclear Ca(2+) homeostasis activate specific gene expression programs and are central to the acquisition and storage of information in the brain. DREAM (downstream regulatory element antagonist modulator), also known as calsenilin/KChIP-3 (K(+) channel interacting protein 3), is a Ca(2+)-binding protein that binds DNA and represses transcription in a Ca(2+)-dependent manner. To study the function of DREAM in the brain, we used transgenic mice expressing a Ca(2+)-insensitive/CREB-independent dominant active mutant DREAM (daDREAM).
View Article and Find Full Text PDFA consensus has famously yet to emerge on the locus and mechanisms underlying the expression of the canonical NMDA receptor-dependent form of LTP. An objective assessment of the evidence leads us to conclude that both presynaptic and postsynaptic expression mechanisms contribute to this type of synaptic plasticity.
View Article and Find Full Text PDFNat Rev Neurosci
January 2008
Two facts about the hippocampus have been common currency among neuroscientists for several decades. First, lesions of the hippocampus in humans prevent the acquisition of new episodic memories; second, activity-dependent synaptic plasticity is a prominent feature of hippocampal synapses. Given this background, the hypothesis that hippocampus-dependent memory is mediated, at least in part, by hippocampal synaptic plasticity has seemed as cogent in theory as it has been difficult to prove in practice.
View Article and Find Full Text PDFThe expression mechanism of long-term potentiation (LTP) remains controversial. Here we combine electrophysiology and Ca(2+) imaging to examine the role of silent synapses in LTP expression. Induction of LTP fails to change p(r) at these synapses but instead mediates an unmasking process that is sensitive to the inhibition of postsynaptic membrane fusion.
View Article and Find Full Text PDFArc/Arg3.1 is robustly induced by plasticity-producing stimulation and specifically targeted to stimulated synaptic areas. To investigate the role of Arc/Arg3.
View Article and Find Full Text PDFLong-term potentiation (LTP) is the activity-dependent process by which transmission is persistently enhanced at chemical synapses in the brain. Details of the cellular mechanisms responsible for LTP are becoming clearer, as neuroscientists identify the key molecules in synaptic transmission, and also the signaling cascades, transcription factors and effector molecules that alter transmission at potentiated synapses. In this review we describe the contributions of pharmacology to the field of synaptic plasticity, and also discuss the role of LTP in developing potential nootropic drugs to enhance learning and memory.
View Article and Find Full Text PDFIt is generally believed that long-term potentiation (LTP) at hippocampal mossy fiber synapses between dentate granule and CA3 pyramidal cells is expressed through presynaptic mechanisms leading to an increase in quantal content. The source of this increase has remained undefined but could include enhanced probability of transmitter release at existing functional release sites or increases in the number of active release sites. We performed optical quantal analyses of transmission at individual mossy fiber synapses in cultured hippocampal slices, using confocal microscopy and intracellular fluorescent Ca(2+) indicators.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
April 2003
Extracellular regulated kinases (ERKI/II), members of the mitogen-activated protein kinase family, play a role in long-term memory and long-term potentiation (LTP). ERKI/II is required for the induction of the early phase of LTP, and we show that it is also required for the late phase of LTP in area CA1 in vitro, induced by a protocol of brief, repeated 100 Hz trains. We also show that ERKI/II is necessary for the upregulation of the proteins encoded by the immediate early genes Zif268 and Homer after the induction of LTP in the dentate gyrus by tetanic stimulation of the perforant path in vivo or by BDNF stimulation of primary cortical cultures.
View Article and Find Full Text PDF