With linear dependency between the explanatory variables, partial least squares (PLS) regression is commonly used for regression analysis. If the response variable correlates to a high degree with the explanatory variables, a model with excellent predictive ability can usually be obtained. Ranking of variable importance is commonly used to interpret the model and sometimes this interpretation guides further experimentation.
View Article and Find Full Text PDFBackground: Strongly multicollinear covariates, such as those typically represented in metabolomics applications, represent a challenge for multivariate regression analysis. These challenges are commonly circumvented by reducing the number of covariates to a subset of linearly independent variables, but this strategy may lead to loss of resolution and thus produce models with poorer interpretative potential. The aim of this work was to implement and illustrate a method, multivariate pattern analysis (MVPA), which can handle multivariate covariates without compromising resolution or model quality.
View Article and Find Full Text PDFHigh-throughput chemical analysis of natural product mixtures lags behind developments in genome sequencing technologies and laboratory automation, leading to a disconnect between library-scale chemical and biological profiling that limits new molecule discovery. Here, we report a new orthogonal sample multiplexing strategy that can increase mass spectrometry-based profiling up to 30-fold over traditional methods. Profiled pooled samples undergo subsequent computational deconvolution to reconstruct peak lists for each sample in the set.
View Article and Find Full Text PDFMass spectrometry metabolomics has become increasingly popular as an integral aspect of studies to identify active compounds from natural product mixtures. Classical metabolomics data analysis approaches do not consider the possibility that interactions (such as synergy) could occur between mixture components. With this study, we developed "interaction metabolomics" to overcome this limitation.
View Article and Find Full Text PDFFew tools exist in natural products discovery to integrate biological screening and untargeted mass spectrometry data at the library scale. Previously, we reported Compound Activity Mapping as a strategy for predicting compound bioactivity profiles directly from primary screening results on extract libraries. We now present NP Analyst, an open online platform for Compound Activity Mapping that accepts bioassay data of almost any type, and is compatible with mass spectrometry data from major instrument manufacturers via the mzML format.
View Article and Find Full Text PDFOxylipins constitute a family of oxidized fatty acids, that are well known as tissue hormones in mammals. They contribute to inflammation and its resolution. The major classes of these lipid mediators are inflammatory prostaglandins (PGs) and leukotrienes (LTs) as well as pro-resolving resolvins (Rvs).
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFIntroduction: Marine planktonic communities are complex microbial consortia often dominated by microscopic algae. The taxonomic identification of individual phytoplankton cells usually relies on their morphology and demands expert knowledge. Recently, a live single-cell mass spectrometry (LSC-MS) pipeline was developed to generate metabolic profiles of microalgae.
View Article and Find Full Text PDFFlagellated oomycetes frequently infect unicellular algae, thus limiting their proliferation. Here we show that the marine oomycete Lagenisma coscinodisci rewires the metabolome of the bloom-forming diatom Coscinodiscus granii, thereby promoting infection success. The algal alkaloids β-carboline and 4-carboxy-2,3,4,9-tetrahydro-1H-β-carboline are induced during infection.
View Article and Find Full Text PDFThe toxic halogenated anilines 2,4,6-tribromoaniline, 2,4,6-trichloroaniline and their dibromochloro and bromodichloro derivatives were considered as compounds of exclusive synthetic origin. Labeling studies and kinetic experiments confirmed that these substances are also biosynthesized by a marine biofilm forming microalga. They represent a novel class of halogenated natural products.
View Article and Find Full Text PDFUnicellular phototrophic algae can form massive blooms with up to millions of individual cells per milliliter in freshwater and marine ecosystems. Despite the temporal dominance of bloom formers many algal species can co-exist and compete for nutrients and space, creating a complex and diverse community. While microscopy and single cell genomics can address the taxonomic inventory, the cellular metabolome has yet to be thoroughly explored to determine the physiological status of microalgae.
View Article and Find Full Text PDFIntroduction: Stable isotopic labeling experiments are powerful tools to study metabolic pathways, to follow tracers and fluxes in biotic and abiotic transformations and to elucidate molecules involved in metal complexing.
Objective: To introduce a software tool for the identification of isotopologues from mass spectrometry data.
Methods: DeltaMS relies on XCMS peak detection and XCMS isotopologue grouping and then analyses data for specific isotope ratios and the relative error of these ratios.
Gas-phase reactions of temporally stored ions play a significant role in trapped ion mass spectrometry. Especially highly labile ion species generated through electron ionization (EI) are prone to undergo gas-phase reactions after relaxation to a low vibrational state. Here, we show that in the C-Trap of the Q Exactive GC Orbitrap mass spectrometer, gaseous water reacts with radical cations of various compound classes.
View Article and Find Full Text PDF