Skeletal muscle accounts for ∼ 80% of postprandial glucose clearance, and skeletal muscle glucose clearance is crucial for maintaining insulin sensitivity and euglycemia. Insulin-stimulated glucose clearance/uptake entails recruitment of glucose transporter 4 (GLUT4) to the plasma membrane (PM) in a process that requires cortical F-actin remodeling; this process is dysregulated in Type 2 Diabetes. Recent studies have implicated PAK1 as a required element in GLUT4 recruitment in mouse skeletal muscle in vivo, although its underlying mechanism of action and requirement in glucose uptake remains undetermined.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
May 2014
Skeletal muscle is the major tissue disposing of dietary glucose, a function regulated by insulin-elicited signals that impart mobilization of GLUT4 glucose transporters to the plasma membrane. This phenomenon, also central to adipocyte biology, has been the subject of intense and productive research for decades. We focus on muscle cell studies scrutinizing insulin signals and vesicle traffic in a spatiotemporal manner.
View Article and Find Full Text PDFRab-GTPases are important molecular switches regulating intracellular vesicle traffic, and we recently showed that Rab8A and Rab13 are activated by insulin in muscle to mobilize GLUT4-containing vesicles to the muscle cell surface. Here we show that the unconventional motor protein myosin Va (MyoVa) is an effector of Rab8A in this process. In CHO-IR cell lysates, a glutathione S-transferase chimera of the cargo-binding COOH tail (CT) of MyoVa binds Rab8A and the related Rab10, but not Rab13.
View Article and Find Full Text PDFSkeletal muscle plays a major role in regulating whole body glucose metabolism. Akt and Rac1 are important regulators of insulin-stimulated glucose uptake in skeletal muscle. However the relative role of each pathway and how they interact are not understood.
View Article and Find Full Text PDFInsulin activates a cascade of signaling molecules, including Rac-1, Akt, and AS160, to promote the net gain of glucose transporter 4 (GLUT4) at the plasma membrane of muscle cells. Interestingly, constitutively active Rac-1 expression results in a hormone-independent increase in surface GLUT4; however, the molecular mechanism and significance behind this effect remain unresolved. Using L6 myoblasts stably expressing myc-tagged GLUT4, we found that overexpression of constitutively active but not wild-type Rac-1 sufficed to drive GLUT4 translocation to the membrane of comparable magnitude with that elicited by insulin.
View Article and Find Full Text PDFIn skeletal muscle, the actin cytoskeleton-regulating GTPase, Rac1, is necessary for insulin-dependent GLUT4 translocation. Muscle contraction increases glucose transport and represents an alternative signaling pathway to insulin. Whether Rac1 is activated by muscle contraction and regulates contraction-induced glucose uptake is unknown.
View Article and Find Full Text PDFObesity is associated with chronic low-grade inflammation. Within adipose tissue of mice fed a high fat diet, resident and infiltrating macrophages assume a pro-inflammatory phenotype characterized by the production of cytokines which in turn impact on the surrounding tissue. However, inflammation is not restricted to adipose tissue and high fat-feeding is responsible for a significant increase in pro-inflammatory cytokine expression in muscle.
View Article and Find Full Text PDFPhosphatidylinositol-4-kinase IIIα (PI4KIIIα) is an essential host cell factor for hepatitis C virus (HCV) replication. An N-terminally truncated 130-kDa form was used to reconstitute an in vitro biochemical lipid kinase assay that was optimized for small-molecule compound screening and identified potent and specific inhibitors. Cell culture studies with PI4KIIIα inhibitors demonstrated that the kinase activity was essential for HCV RNA replication.
View Article and Find Full Text PDFSmall Rho family GTPases are important regulators of cellular traffic. Emerging evidence now implicates Rac1 and Rac-dependent actin reorganisation in insulin-induced recruitment of glucose transporter-4 (GLUT4) to the cell surface of muscle cells and mature skeletal muscle. This review summarises the current thinking on the regulation of Rac1 by insulin, the role of Rac-dependent cortical actin remodelling in GLUT4 traffic, and the impact of Rac1 towards insulin resistance in skeletal muscle.
View Article and Find Full Text PDFInsulin resistance is associated with chronic low-grade inflammation in vivo, largely mediated by activated innate immune cells. Cytokines and pathogen-derived ligands of surface toll-like receptors can directly cause insulin resistance in muscle cells. However, it is not known if intracellular pathogen sensors can, on their own, provoke insulin resistance.
View Article and Find Full Text PDFGLUT4 vesicles are actively recruited to the muscle cell surface upon insulin stimulation. Key to this process is Rac-dependent reorganization of filamentous actin beneath the plasma membrane, but the underlying molecular mechanisms have yet to be elucidated. Using L6 rat skeletal myoblasts stably expressing myc-tagged GLUT4, we found that Arp2/3, acting downstream of Rac GTPase, is responsible for the cortical actin polymerization evoked by insulin.
View Article and Find Full Text PDF