Publications by authors named "Tim Sierens"

Wetlands are one of the most threatened ecosystems in the world because more than 70% of the area worldwide has been lost since 1900. Wetland plant species rely greatly on water for seeds and propagules, which may lead to a downstream unidirectional dispersal and accumulation of genetic diversity downstream. However, several species show no support for unidirectional genetic diversity, revealing the complexity of population dynamics and gene flow in wetlands.

View Article and Find Full Text PDF

Estimates of population structure and gene flow allow exploring the historical and contemporary processes that determine a species' biogeographic pattern. In mangroves, large-scale genetic studies to estimate gene flow have been conducted predominantly in the Indo-Pacific and Atlantic region. Here we examine the genetic diversity and connectivity of Rhizophora mucronata across a > 3,000 km coastal stretch in the Western Indian Ocean (WIO) including WIO islands.

View Article and Find Full Text PDF

Mangrove ecosystems along the East African coast are often characterized by a disjunct zonation pattern of seaward and landward trees. This disjunct zonation may be maintained through different positions in the tidal frame, yielding different dispersal settings. The spatial configuration of the landscape and coastal processes such as tides and waves is expected to largely influence the extent of propagule transport and subsequent regeneration.

View Article and Find Full Text PDF

Coastal salt- and brackish water lagoons are unique shallow habitats characterized by beds of submerged seagrasses and salt-tolerant species. Established long-term and large-scale patterns of connectivity in lagoon systems can be strongly determined by patterns of nearshore and coastal currents next to local bird-mediated seed dispersal. Despite the importance of dispersal in landscape ecology, characterizing patterns of connectivity remains challenging in aquatic systems.

View Article and Find Full Text PDF

Land degradation and soil erosion in the upper catchments of tropical lakes fringed by papyrus vegetation can result in a sediment load gradient from land to lakeward. Understanding the dynamics of clonal modules (ramets and genets) and growth strategies of plants on such a gradient in both space and time is critical for exploring a species adaptation and processes regulating population structure and differentiation. We assessed the spatial and temporal dynamics in clonal growth, diversity, and structure of an emergent macrophyte, Cyperus papyrus (papyrus), in response to two contrasting sedimentation regimes by combining morphological traits and genotype data using 20 microsatellite markers.

View Article and Find Full Text PDF

Many aquatic plant and seagrass species are widespread and the origin of their continent-wide ranges might result from high gene flow levels. The response of species when extending northwards since the Last Glacial Maximum can be opposed to the structuring of their populations that survived glaciation cycles in southern regions. The peri-Mediterranean is a complex series of sea basins, coastlines, islands and river deltas with a unique history since the Messinian Crisis that potentially influenced allopatric processes of aquatic life.

View Article and Find Full Text PDF

This article documents the addition of 268 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Alburnoides bipunctatus, Chamaerops humilis, Chlidonias hybrida, Cyperus papyrus, Fusarium graminearum, Loxigilla barbadensis, Macrobrachium rosenbergii, Odontesthes bonariensis, Pelteobagrus vachelli, Posidonia oceanica, Potamotrygon motoro, Rhamdia quelen, Sarotherodon melanotheron heudelotii, Sibiraea angustata, Takifugu rubripes, Tarentola mauritanica, Trimmatostroma sp. and Wallago attu.

View Article and Find Full Text PDF