Background: Regulatory T cells (Tregs) are potentially prognostic indicators in patients with glioblastoma. If differences in frequency of Tregs in tumor or blood account for substantial variation in patient survival, then reliably measuring Tregs may enhance treatment selection and improve outcomes.
Methods: We measured Tregs and CD3+ T cells in tumors and blood from 25 patients with newly diagnosed glioblastoma.
The adaptive immune system is involved in tumor establishment and aggressiveness. Tumors of the ovaries, an immune-privileged organ, spread via transceolomic routes and rarely to distant organs. This is contrary to tumors of non-immune privileged organs, which often disseminate hematogenously to distant organs.
View Article and Find Full Text PDFOur previously reported phase I clinical trial with the allogeneic gene-modified tumor cell line RCC-26/CD80/IL-2 showed that vaccination was well tolerated and feasible in metastatic renal cell carcinoma (RCC) patients. Substantial disease stabilization was observed in most patients despite a high tumor burden at study entry. To investigate alterations in immune responses that might contribute to this effect, we performed an extended immune monitoring that included analysis of reactivity against multiple antigens, cytokine/chemokine changes in serum and determination of the frequencies of immune suppressor cell populations, including natural regulatory T cells (nTregs) and myeloid-derived suppressor cell subsets (MDSCs).
View Article and Find Full Text PDFThe immune system plays a pivotal role in tumor establishment. However, the role of T-lymphocytes within the tumor microenvironment as major cellular component of the adaptive effector immune response and their counterpart, regulatory T-cells (Treg), responsible for suppressive immune modulation, is not completely understood. This is partly due to the lack of reliable technical solutions for specific cell quantification in solid tissues.
View Article and Find Full Text PDF