Glucose and hypotonicity induced cell swelling stimulate insulin release from pancreatic β-cells but the mechanisms are poorly understood. Recently, Piezo1 was identified as a mechanically-activated nonselective Ca permeable cationic channel in a range of mammalian cells. As cell swelling induced insulin release could be through stimulation of Ca permeable stretch activated channels, we hypothesised a role for Piezo1 in cell swelling induced insulin release.
View Article and Find Full Text PDFThe anti-cancer receptor tyrosine kinase inhibitors include known cardiotoxins: a component of this toxicity may be mediated by effects on cardiac fibroblasts (CFs). We hypothesised that imatinib mesylate (imatinib) and sunitinib malate (sunitinib) cause significant dysfunction in adult CFs. Following in vitro treatments with imatinib or sunitinib, adult rat CF viability was assessed by fluorescein diacetate assay, proliferation measured by bromodeoxyuridine nuclear incorporation and changes to the expression of CF secretome components determined by real time quantitative RT-PCR.
View Article and Find Full Text PDFDiabetic stress increases the production of reactive oxygen species (ROS), leading to mitochondrial fragmentation and dysfunction. We hypothesized that ROS-sensitive TRPM2 channels mediated diabetic stress-induced mitochondrial fragmentation. We found that chemical inhibitors, RNAi silencing, and genetic knockout of TRPM2 channels abolished the ability of high glucose to cause mitochondrial fission in endothelial cells, a cell type that is particularly vulnerable to diabetic stress.
View Article and Find Full Text PDFRise in plasma free fatty acids (FFAs) represents a major risk factor for obesity-induced type 2 diabetes. Saturated FFAs cause a progressive decline in insulin secretion by promoting pancreatic β-cell death through increased production of reactive oxygen species (ROS). Recent studies have demonstrated that palmitate (a C-FFA)-induced rise in ROS causes β-cell death by triggering mitochondrial fragmentation, but the underlying mechanisms are unclear.
View Article and Find Full Text PDFMetformin is the main drug of choice for treating type 2 diabetes, yet the therapeutic regimens and side effects of the compound are all undesirable and can lead to reduced compliance. The aim of this study was to elucidate the mechanism of action of two novel compounds which improved glucose handling and weight gain in mice on a high-fat diet. Wildtype C57Bl/6 male mice were fed on a high-fat diet and treated with novel, anti-diabetic compounds.
View Article and Find Full Text PDFReactive oxygen species (ROS) can cause pancreatic β-cell death by activating transient receptor potential (melastatin) 2 (TRPM2) channels. Cell death has been attributed to the ability of these channels to raise cytosolic Ca2+. Recent studies however revealed that TRPM2 channels can also conduct Zn2+, but the physiological relevance of this property is enigmatic.
View Article and Find Full Text PDFVoltage-gated ion (K(+), Na(+), Ca(2+)) channels contain a pore domain (PD) surrounded by four voltage sensing domains (VSD). Each VSD is made up of four transmembrane helices, S1-S4. S4 contains 6-7 positively charged residues (arginine/lysine) separated two hydrophobic residues, whereas S1-S3 contribute to two negatively charged clusters.
View Article and Find Full Text PDFThe zebrafish, Danio rerio, is emerging as an important model organism for the pathophysiological study of some human kidney diseases, but the sites of expression and physiological roles of a number of protein orthologues in the zebrafish nephron remain mostly undefined. Here we show that a zebrafish potassium channel is orthologous to the mammalian kidney potassium channel, ROMK. The cDNA (kcnj1) encodes a protein (Kcnj1) that when expressed in Xenopus laevis oocytes displayed pH- and Ba2+-sensitive K+-selective currents, but unlike the mammalian channel, was completely insensitive to the peptide inhibitor tertiapin-Q.
View Article and Find Full Text PDFThe hERG potassium channel is a member of the voltage gated potassium (Kv) channel family, comprising a pore domain and four voltage sensing domains (VSDs). Like other Kv channels, the VSD senses changes in membrane voltage and transmits the signal to gates located in the pore domain; the gates open at positive potentials (activation) and close at negative potentials, thereby controlling the ion flux. hERG, however, differs from other Kv channels in that it is activated slowly but inactivated rapidly - a property that is crucial for the role it plays in the repolarization of the cardiac action potential.
View Article and Find Full Text PDFVoltage-gated potassium channels are six-transmembrane (S1-S6) proteins that form a central pore domain (4 x S5-S6) surrounded by four voltage sensor domains (S1-S4), which detect changes in membrane voltage and control pore opening. Upon depolarization, the S4 segments move outward carrying charged residues across the membrane field, thereby leading to the opening of the pore. The mechanism of S4 motion is controversial.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2002
To test the hypothesis that the Kch gene of Escherichia coli encodes a potassium channel, we have transformed E. coli with an expression vector containing the Kch sequence and observed the effect of over-expression of Kch on E. coli.
View Article and Find Full Text PDFVoltage-gated potassium (K(v)) channels are integral membrane proteins, composed of four subunits, each comprising six (S1-S6) transmembrane segments. S1-S4 comprise the voltage-sensing domain, and S5-S6 with the linker P-loop forms the ion conducting pore domain. During activation, S4 undergoes structural rearrangements that lead to the opening of the channel pore and ion conduction.
View Article and Find Full Text PDF