Background And Objectives: Fanconi anemia (FA) cells are characteristically hypersensitive to bifunctional alkylating agents, notably mitomycin C (MMC), causing increased programmed cell death (PCD). FA cells also have abnormalities in mitochondrial function. We hypothesized that the abnormalities in PCD are mitochondrially mediated.
View Article and Find Full Text PDFParoxysmal nocturnal haemoglobinuria (PNH) has a dual pathogenesis. PIG-A mutations generate clones of haemopoietic stem cells (HSC) lacking glycosylphosphatidylinositol (GPI)-anchored proteins and, secondly, these clones expand because of a selective advantage related to bone marrow failure. The first aspect has been elucidated in detail, but the mechanisms leading to clonal expansion are not well understood.
View Article and Find Full Text PDFMicroarrays provide a powerful tool for the study of haemopoietic stem and progenitor cells (HSC). Because of the low frequency of HSC, it is rarely feasible to obtain enough mRNA for microarray hybridizations, and amplification will be necessary. Antisense RNA (aRNA) amplification is reported to give high-fidelity amplification, but most studies have used only qualitative validation.
View Article and Find Full Text PDFParoxysmal nocturnal hemoglobinuria (PNH) may arise during long-term follow- up of aplastic anemia (AA), and many AA patients have minor glycosylphosphatidylinositol (GPI) anchor-deficient clones, even at presentation. PIG-A gene mutations in AA/PNH and hemolytic PNH are thought to be similar, but studies on AA/PNH have been limited to individual cases and a few small series. We have studied a large series of AA patients with a GPI anchor-deficient clone (AA/PNH), including patients with minor clones, to determine whether their pattern of PIG-A mutations was identical to the reported spectrum in hemolytic PNH.
View Article and Find Full Text PDF