Publications by authors named "Tim R Mosmann"

Introduction: The HVTN 105 vaccine clinical trial tested four combinations of two immunogens - the DNA vaccine DNA-HIV-PT123, and the protein vaccine AIDSVAX B/E. All combinations induced substantial antibody and CD4+ T cell responses in many participants. We have now re-examined the intracellular cytokine staining flow cytometry data using the high-resolution SWIFT clustering algorithm, which is very effective for enumerating rare populations such as antigen-responsive T cells, and also determined correlations between the antibody and T cell responses.

View Article and Find Full Text PDF

Vaccination remains our main defence against influenza, which causes substantial annual mortality and poses a serious pandemic threat. Influenza virus evades immunity by rapidly changing its surface antigens but, even when the vaccine is well matched to the current circulating virus strains, influenza vaccines are not as effective as many other vaccines. Influenza vaccine development has traditionally focused on the induction of protective antibodies, but there is mounting evidence that T cell responses are also protective against influenza.

View Article and Find Full Text PDF

Biological differences of interest in large, high-dimensional flow cytometry datasets are often obscured by undesired variations caused by differences in cytometers, reagents, or operators. Each variation type requires a different correction strategy, and their unknown contributions to overall variability hinder automated correction. We now describe swiftReg, an automated method that reduces undesired sources of variability between samples and particularly between batches.

View Article and Find Full Text PDF

These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells.

View Article and Find Full Text PDF

Background: T-helper (Th) 17 cells are important in the control of Streptococcus pneumoniae. We sought to understand the mechanism of failure of Th17 immunity resulting in S. pneumoniae infections in children <2 years old.

View Article and Find Full Text PDF

Background: We sought to understand why some children respond poorly to vaccinations in the first year of life.

Methods: A total of 499 children (6-36 months old) provided serum and peripheral blood mononuclear cell samples after their primary and booster vaccination. Vaccine antigen-specific antibody levels were analyzed with enzyme-linked immunosorbent assay, and frequency of memory B cells, functional T-cell responses, and antigen-presenting cell responses were assessed in peripheral blood mononuclear cell samples with flow cytometric analysis.

View Article and Find Full Text PDF

Clustering-based algorithms for automated analysis of flow cytometry datasets have achieved more efficient and objective analysis than manual processing. Clustering organizes flow cytometry data into subpopulations with substantially homogenous characteristics but does not directly address the important problem of identifying the salient differences in subpopulations between subjects and groups. Here, we address this problem by augmenting SWIFT--a mixture model based clustering algorithm reported previously.

View Article and Find Full Text PDF

The cytokine secretion assay identifies live cytokine-secreting cells by capturing the secreted cytokine on a surface-bound capture antibody in dilute suspension culture, followed by detection with a fluorescent anti-cytokine antibody. However, examining the kinetics of cytokine detection revealed that IL-2 staining reached a maximum at early times and then declined, whereas staining for other cytokines including interferon (IFNγ) increased for up to 90 min. The decline in IL-2 staining could have been due to rapid cessation of cytokine synthesis, coupled with internalization of cytokine/antibody complexes from the cell surface.

View Article and Find Full Text PDF

The B cell response to influenza infection of the respiratory tract contributes to viral clearance and establishes profound resistance to reinfection by related viruses. Numerous studies have measured virus-specific antibody-secreting cell (ASC) frequencies in different anatomical compartments after influenza infection and provided a general picture of the kinetics of ASC formation and dispersion. However, the dynamics of ASC populations are difficult to determine experimentally and have received little attention.

View Article and Find Full Text PDF

The therapeutic potential of monoclonal antibodies (mAbs) makes them an ideal tool in both clinical and research applications due to their ability to recognize and bind specific epitopes with high affinity and selectivity. While mAbs offer significant therapeutic potential, their utility is overshadowed by the cost associated with their production, which often relies on the ability to identify minor antigen-specific cells out of a heterogeneous population. To address concerns with suboptimal methods for screening cells, we have developed a cell-sorting array composed of nanoliter spherical cell culture compartments termed microbubble (MB) wells.

View Article and Find Full Text PDF

Recent advances in understanding CD4(+) T-cell differentiation suggest that previous models of a few distinct, stable effector phenotypes were too simplistic. Although several well-characterized phenotypes are still recognized, some states display plasticity, and intermediate phenotypes exist. As a framework for reexamining these concepts, we use Waddington's landscape paradigm, augmented with explicit consideration of stochastic variations.

View Article and Find Full Text PDF

Within overall Th1-like human memory T cell responses, individual T cells may express only some of the characteristic Th1 cytokines when reactivated. In the Th1-oriented memory response to influenza, we have tested the contributions of two potential mechanisms for this diversity: variable expression of cytokines by a uniform population during activation, or different stable subsets that consistently expressed subsets of the Th1 cytokine pattern. To test for short-term variability, in vitro-stimulated influenza-specific human memory CD4+ T cells were sorted according to IL-2 and IFNγ expression, cultured briefly in vitro, and cytokine patterns measured after restimulation.

View Article and Find Full Text PDF

We present a model-based clustering method, SWIFT (Scalable Weighted Iterative Flow-clustering Technique), for digesting high-dimensional large-sized datasets obtained via modern flow cytometry into more compact representations that are well-suited for further automated or manual analysis. Key attributes of the method include the following: (a) the analysis is conducted in the multidimensional space retaining the semantics of the data, (b) an iterative weighted sampling procedure is utilized to maintain modest computational complexity and to retain discrimination of extremely small subpopulations (hundreds of cells from datasets containing tens of millions), and (c) a splitting and merging procedure is incorporated in the algorithm to preserve distinguishability between biologically distinct populations, while still providing a significant compaction relative to the original data. This article presents a detailed algorithmic description of SWIFT, outlining the application-driven motivations for the different design choices, a discussion of computational complexity of the different steps, and results obtained with SWIFT for synthetic data and relatively simple experimental data that allow validation of the desirable attributes.

View Article and Find Full Text PDF

A multistage clustering and data processing method, SWIFT (detailed in a companion manuscript), has been developed to detect rare subpopulations in large, high-dimensional flow cytometry datasets. An iterative sampling procedure initially fits the data to multidimensional Gaussian distributions, then splitting and merging stages use a criterion of unimodality to optimize the detection of rare subpopulations, to converge on a consistent cluster number, and to describe non-Gaussian distributions. Probabilistic assignment of cells to clusters, visualization, and manipulation of clusters by their cluster medians, facilitate application of expert knowledge using standard flow cytometry programs.

View Article and Find Full Text PDF

We characterized cytokine profiles of CD4(+) T-helper (h) cells in adults and young children to ascertain if responses occur to next-generation candidate vaccine antigens PspA, PcpA, PhtD, PhtE, Ply, LytB of Streptococcus pneumonia (Spn) and protein D and OMP26 of non-typeable Haemophilus influenzae (NTHi). Adults had vaccine antigen-specific Th1 and Th2 cells responsive to all antigens evaluated whereas young children had significant numbers of vaccine antigen-specific CD4(+) T cells producing IL-2, (p=0.004).

View Article and Find Full Text PDF

Human CD4 T cell recall responses to influenza virus are strongly biased towards Type 1 cytokines, producing IFNγ, IL-2 and TNFα. We have now examined the effector phenotypes of CD4 T cells in more detail, particularly focusing on differences between recent versus long-term, multiply-boosted responses. Peptides spanning the proteome of temporally distinct influenza viruses were distributed into pools enriched for cross-reactivity to different influenza strains, and used to stimulate antigen-specific CD4 T cells representing recent or long-term memory.

View Article and Find Full Text PDF

Traditional methods for flow cytometry (FCM) data processing rely on subjective manual gating. Recently, several groups have developed computational methods for identifying cell populations in multidimensional FCM data. The Flow Cytometry: Critical Assessment of Population Identification Methods (FlowCAP) challenges were established to compare the performance of these methods on two tasks: (i) mammalian cell population identification, to determine whether automated algorithms can reproduce expert manual gating and (ii) sample classification, to determine whether analysis pipelines can identify characteristics that correlate with external variables (such as clinical outcome).

View Article and Find Full Text PDF

Cytokine expression patterns of T cells can be regulated by pre-commitment to stable effector phenotypes, further modification of moderately stable phenotypes, and quantitative changes in cytokine production in response to acute signals. We showed previously that the epidermal growth factor family member Amphiregulin is expressed by T cell receptor-activated mouse CD4 T cells, particularly Th2 cells, and helps eliminate helminth infection. Here we report a detailed analysis of the regulation of Amphiregulin expression by human T cell subsets.

View Article and Find Full Text PDF

Although previous studies have found minimal changes in CD4 T cell responses after vaccination of adults with trivalent inactivated influenza vaccine, daily sampling and monitoring of the proliferation marker Ki-67 have now been used to reveal that a substantial fraction of influenza-specific CD4 T cells respond to vaccination. At 4-6 days after vaccination, there is a sharp rise in the numbers of Ki-67-expressing PBMC that produce IFNγ, IL-2 and/or TNFα in vitro in response to influenza vaccine or peptide. Ki-67(+) cell numbers then decline rapidly, and 10 days after vaccination, both Ki-67(+) and overall influenza-specific cell numbers are similar to pre-vaccination levels.

View Article and Find Full Text PDF

Periodic outbreaks of pandemic influenza have been a devastating cause of human mortality over the past century. More recently, an avian influenza strain, designated H5N1, has been identified as having the potential to cause a zoogenic pandemic in humans, and a current outbreak of a new H1N1 influenza variant hypothesized to be of swine origin is of considerable concern. In order to facilitate surveillance and the rapid assessment and comparison of vaccination efforts, a high-throughput assay is highly desirable to supplement standard methods, which require high biosafety-level facilities.

View Article and Find Full Text PDF

Background: Amphiregulin, a member of the epidermal growth factor family, is expressed by activated mouse T(H)2 cells. Amphiregulin produced by mouse hematopoietic cells contributes to the elimination of a nematode infection by a type 2 effector response.

Objective: To identify the human peripheral blood cell population expressing amphiregulin.

View Article and Find Full Text PDF

Seasonal and pandemic influenza A virus (IAV) continues to be a public health threat. However, we lack a detailed and quantitative understanding of the immune response kinetics to IAV infection and which biological parameters most strongly influence infection outcomes. To address these issues, we use modeling approaches combined with experimental data to quantitatively investigate the innate and adaptive immune responses to primary IAV infection.

View Article and Find Full Text PDF

Our previous work has demonstrated that human follicular lymphoma (FL) infiltrating T cells are anergic, in part due to suppression by regulatory T cells. In this study, we identify pericellular adenosine, interacting with T cell-associated G protein-coupled A(2A/B) adenosine receptors (AR), as contributing to FL T cell hyporesponsiveness. In a subset of FL patient samples, treatment of lymph node mononuclear cells (LNMC) with specific A(2A/B) AR antagonists results in an increase in IFN-gamma or IL-2 secretion upon anti-CD3/CD28 Ab stimulation, as compared with that seen without inhibitors.

View Article and Find Full Text PDF