Publications by authors named "Tim Muster"

In this study, four agro-industrial substrates, chicken litter (CL), food waste (FW), wheat straw (WS) and hay grass (HG) were assessed as feedstock for anaerobic digestion (AD) under semi-continuous conditions at organic loading rates (OLRs) of 2.0-3.0 g TS/L.

View Article and Find Full Text PDF

Anaerobic digestion (AD) of different agro-industrial wastes and their co-digestion potential has been exhaustively studied in this research. It explores variation of feedstock characteristics such as biodegradability and methane potential during AD and anaerobic co-digestion (ACoD) of chicken litter (CL) with yoghurt whey (YW), organic fraction of municipal solid waste (OFMSW), hay grass (HG) and wheat straw (WS) under mesophilic conditions. Comparative performance was made at different loading concentrations (2%, 3% and 4% VS) with 1:2g/g VS of substrate to inoculum and carrying C/N ratio.

View Article and Find Full Text PDF

Brown coal is a relatively abundant and low-cost material, which has been used as an effective ion-exchanger to remove ammonium from wastewater. In this study, the influences of pH, ammonium concentration and brown coal dose were investigated for removal of ammonium content from synthetic wastewater. Raw brown coal (RBC) treated with base solution has superior ammonium removal efficiency compared to RBC, which was due to chemical alterations and thus greater attachment of ammonium molecules to base-washed brown coal (BWBC), confirmed by Fourier transform infra-red spectroscopy.

View Article and Find Full Text PDF

This work presents and explores a novel methodology for the removal and recovery of ammonia from wastewater based upon two mechanisms: electrochemical oxidation and a previously unreported electrochemically-assisted surface transfer mechanism. Recovery of ammonia is enabled by placing a porous cathodic electrode at the wastewater-air interface. In this configuration, the cathode creates local alkalinity and an electric field that draws ammonium ions towards the wastewater-air interface, resulting in near-linear reductions of dissolved ammonium irrespective of concentration.

View Article and Find Full Text PDF

Modern wastewater utilities need to be able to measure and quantify the amount of methane from their treatment facilities in order to understand the potential energy that can be produced and the amount of methane being lost. This paper describes the application of a novel sampling bailer designed for the collection of wastewater samples that minimises methane losses. Samples collected during and following anaerobic treatment from a wastewater treatment plant using a novel sampling bailer were analysed using a previously optimised analytical method.

View Article and Find Full Text PDF

Fertilisers are one of the most important elements of modern agriculture. The application of fertilisers in agricultural practices has markedly increased the production of food, feed, fuel, fibre and other plant products. However, a significant portion of nutrients applied in the field is not taken up by plants and is lost through leaching, volatilisation, nitrification, or other means.

View Article and Find Full Text PDF

Carbon dots (CDs) have many fascinating fluorescent properties, however, their low quantum yield limits their applications. In this study, the photoluminescence (PL) of CDs in the vicinity of gold nanoparticles (Au NPs) is enhanced significantly due to the surface plasmon resonance (SPR) of the Au NPs. This is achieved by conjugating Au NPs and CDs to dendrimers (PAMAM) through an amidation reaction, resulting in the formation of the Au-PAMAM-CD conjugates.

View Article and Find Full Text PDF

Copper ion (Cu(2+)) and L-cysteine (L-Cys) detection is critically important since an abnormal level of Cu(2+) or L-Cys is an indicator for many diseases. In this paper, we demonstrate an "off-on" approach for highly sensitive and selective detection of Cu(2+) and L-Cys using carbon dots (CDs) as fluorescent probes. CDs were prepared by using mesoporous silica (MS) spheres as nanoreactors.

View Article and Find Full Text PDF

Electron-beam-induced carbon film deposition has long been recognized as a side effect of scanning electron microscopy. To characterize the nature of this type of contamination, silicon wafers were subjected to prolonged exposure to 15 kV electron beam energy with a probe current of 300 pA. Using Raman spectroscopy, the deposited coating was identified as an amorphous carbon film with an estimated crystallite size of 125 A.

View Article and Find Full Text PDF

Water sorption kinetics and water contact angles have been characterized for a range of pharmaceutical powders: ambroxol hydrochloride, griseofulvin, N,n-octyl-D-gluconamide, paracetamol, sulfathiazole, and theophylline. The uptake of water by powder samples at saturated vapor pressure was modeled using a pseudo first-order kinetic relationship. Parameters from this model have been correlated with the concentration and reactivity of the active surface sites of the pharmaceutical powders and their contact angles.

View Article and Find Full Text PDF

Whilst contact angle measurements obtained using the Wilhelmy balance technique are accurate and reproducible for planar surfaces, their use for characterizing particulate materials is highly dependent upon accurate knowledge of the wet perimeter. This communication suggests that the approach of Pepin et al. [Int.

View Article and Find Full Text PDF

A variety of surface specific techniques have been used to determine the face-specific structure, chemistry, and wettability of model pharmaceutical crystals, i.e., N,n-octyl-d-gluconamide and sulfathiazole (polymorphic forms I and III).

View Article and Find Full Text PDF

The time-dependent wetting of sulfathiazole compacts with sessile water drops was evaluated using video microscopy. The influence of sulfathiazole crystalline form, particle size, pre-saturation with water, humidity and compaction pressure on the droplet spreading kinetics and contact angles are reported. The rate and extent of droplet spreading decreased for compact surfaces of high microscopic roughness; this was determined by atomic force microscopy (AFM).

View Article and Find Full Text PDF