Non-Methane Volatile Organic Compounds (NMVOCs) generate ozone (O) when they are oxidized in the presence of oxides of nitrogen, modulate the oxidative capacity of the atmosphere and can lead to the formation of aerosol. Here, we assess the capability of a chemical transport model (GEOS-Chem) to simulate NMVOC concentrations by comparing ethane, propane and higher alkane observations in remote regions from the NOAA Flask Network and the World Meteorological Organization's Global Atmosphere Watch (GAW) network. Using the Community Emissions Data System (CEDS) inventory we find a significant underestimate in the simulated concentration of both ethane (35%) and propane (64%), consistent with previous studies.
View Article and Find Full Text PDFRoad vehicles make important contributions to a wide range of pollutant emissions from the street level to global scales. The quantification of emissions from road vehicles is, however, highly challenging given the number of individual sources involved and the myriad factors that influence emissions such as fuel type, emission standard, and driving behavior. In this work, we use highly detailed and comprehensive vehicle emission remote sensing measurements made under real driving conditions to develop new bottom-up inventories that can be compared to official national inventory totals.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
October 2020
Volatile organic compounds (VOCs) are a broad class of air pollutants which act as precursors to tropospheric ozone and secondary organic aerosols. Total UK emissions of anthropogenic VOCs peaked in 1990 at 2,840 kt yr and then declined to approximately 810 kt yr in 2017 with large reductions in road transport and fugitive fuel emissions. The atmospheric concentrations of many non-methane hydrocarbons (NMHC) in the UK have been observed to fall over this period in broadly similar proportions.
View Article and Find Full Text PDFVolatile organic compounds (VOCs) emitted from personal care products (PCPs) can affect indoor air quality and outdoor air quality when ventilated. In this paper, we determine a set of simplified VOC species profiles and emission rates for a range of non-aerosol PCPs. These have been constructed from individual vapor analysis from 36 products available in the UK, using equilibrium headspace analysis with selected-ion flow-tube mass spectrometry (SIFT-MS).
View Article and Find Full Text PDFReducing ambient concentrations of nitrogen dioxide (NO2) remains a key challenge across many European urban areas, particularly close to roads. This challenge mostly relates to the lack of reduction in emissions of oxides of nitrogen (NOx) from diesel road vehicles relative to the reductions expected through increasingly stringent vehicle emissions legislation. However, a key component of near-road concentrations of NO2 derives from directly emitted (primary) NO2 from diesel vehicles.
View Article and Find Full Text PDFA photochemical trajectory model has been used to examine the relative propensities of a wide variety of volatile organic compounds (VOCs) emitted by human activities to form secondary organic aerosol (SOA) under one set of highly idealised conditions representing northwest Europe. This study applied a detailed speciated VOC emission inventory and the Master Chemical Mechanism version 3.1 (MCM v3.
View Article and Find Full Text PDF