Publications by authors named "Tim M Becker"

On the short term, carbon capture is a viable solution to reduce human-induced CO emissions, which requires an energy efficient separation of CO. Metal-organic frameworks (MOFs) may offer opportunities for carbon capture and other industrially relevant separations. Especially, MOFs with embedded open metal sites have been shown to be promising.

View Article and Find Full Text PDF

We present a new plugin for LAMMPS for on-the-fly computation of transport properties (OCTP) in equilibrium molecular dynamics. OCTP computes the self- and Maxwell-Stefan diffusivities, bulk and shear viscosities, and thermal conductivities of pure fluids and mixtures in a single simulation. OCTP is the first implementation in LAMMPS that uses the Einstein relations combined with the order- n algorithm for the efficient sampling of dynamic variables.

View Article and Find Full Text PDF

The separation of light olefins from paraffins via cryogenic distillation is a very energy intensive process. Solid adsorbents and especially metal-organic frameworks with open metal sites have the potential to significantly lower the required energy. Specifically, M-MOF-74 has drawn considerable attention for application in olefin/paraffin separation.

View Article and Find Full Text PDF

For absorption refrigeration, it has been shown that ionic liquids have the potential to replace conventional working pairs. Due to the huge number of possibilities, conducting lab experiments to find the optimal ionic liquid is infeasible. Here, we provide a proof-of-principle study of an alternative computational approach.

View Article and Find Full Text PDF

Molecular dynamics simulations were performed for the prediction of the finite-size effects of Maxwell-Stefan diffusion coefficients of molecular mixtures and a wide variety of binary Lennard-Jones systems. A strong dependency of computed diffusivities on the system size was observed. Computed diffusivities were found to increase with the number of molecules.

View Article and Find Full Text PDF

Crown-ethers have recently been used to assemble porous liquids (PLs), which are liquids with permanent porosity formed by mixing bulky solvent molecules (e.g., 15-crown-5 ether) with solvent-inaccessible organic cages.

View Article and Find Full Text PDF

The family of M-MOF-74, with M = Co, Cr, Cu, Fe, Mg, Mn, Ni, Ti, V, and Zn, provides opportunities for numerous energy related gas separation applications. The pore structure of M-MOF-74 exhibits a high internal surface area and an exceptionally large adsorption capacity. The chemical environment of the adsorbate molecule in M-MOF-74 can be tuned by exchanging the metal ion incorporated in the structure.

View Article and Find Full Text PDF