Starch synthesis in maize endosperm adheres to the basipetal sequence from the apex downwards. However, the mechanism underlying nonuniformity among regions of the endosperm in starch accumulation and its significance is poorly understood. Here, we examined the spatiotemporal transcriptomes and starch accumulation dynamics in apical (AE), middle (ME), and basal (BE) regions of endosperm throughout the filling stage.
View Article and Find Full Text PDFUnderstanding pollen and ovule fertility as factors influencing fruit and seed set is important in cassava breeding. Extended daylength with red light (RL) and plant growth regulators (PGRs) have been used to induce flowering and fruit set in cassava without any reference to effects on pollen viability or ovule fertilizability. This study investigated the effects of field-applied RL and PGR on pollen viability and ovule fertilizability.
View Article and Find Full Text PDFCassava breeding faces obstacles due to late flowering and poor flower and seed set. The acceleration of breeding processes and the reduction in each cycle's duration hinge upon efficiently conducting crosses to yield ample progeny for subsequent cycles. Our primary objective was to identify methods that provide tools for cassava breeding programs, enabling them to consistently and rapidly generate offspring from a wide array of genotypes.
View Article and Find Full Text PDFBackground: Cassava (Manihot esculenta Crantz) is staple food and major source of calories for over 500 million people in sub-Saharan Africa. The crop is also a source of income for smallholder farmers, and has increasing potential for industrial utilization. However, breeding efforts to match the increasing demand of cassava are impeded by its inability to flower, delayed or unsynchronized flowering, low proportion of female flowers and high fruit abortions.
View Article and Find Full Text PDFCassava is a tropical crop that provides daily carbohydrates to more than 800 million people. New cassava cultivars with improved yield, disease resistance, and food quality are critical to end hunger and reduce poverty in the tropics. However, the progress of new cultivar development has been dragged down by difficulties obtaining flowers from desired parental plants to enable designed crosses.
View Article and Find Full Text PDFFront Plant Sci
September 2022
Cassava is a staple food crop in the tropics, and is of particular importance in Africa. Recent development of genomic selection technology have improved the speed of cassava breeding; however, cassava flower initiation and development remains a bottleneck. The objectives of the current studies were to elucidate the effect of photoperiod, temperature and their interactions on the time of flowering and flower development in controlled environments, and to use RNA-sequencing to identify transcriptome expression underlying these environmental responses.
View Article and Find Full Text PDFCassava is an important food security crop in tropical regions of the world. Cassava improvement by breeding is limited by its delayed and poor production of flowers, such that cassava flowering under field conditions indirectly lengthens the breeding cycle. By studying genotype and environment interaction under two Nigerian field conditions (Ubiaja and Ibadan) and three controlled temperature conditions (22°C/18°C, 28/24°C and 34/30°C (day/night)), we found that while early flowering genotypes flowered at similar times and rates under all growing conditions (unfavorable and favorable field and controlled-temperature environments), late flowering genotypes were environmentally sensitive such that they were substantially delayed in unfavorable environments.
View Article and Find Full Text PDFCassava, a tropical storage-root crop, is a major source of food security for millions in the tropics. Cassava breeding, however, is hindered by the poor development of flowers and a low ratio of female flowers to male flowers. To advance the understanding of the mechanistic factors regulating cassava flowering, combinations of plant growth regulators (PGRs) and pruning treatments were examined for their effectiveness in improving flower production and fruit set in field conditions.
View Article and Find Full Text PDFPotato is adapted to cool environments, and there is concern that its performance may be diminished considerably due to global warming and more frequent episodes of heat stress. Our objectives were to determine the response of potato plants to elevated CO (700 μmol/mol) and high temperature (35/25 °C) at tuber initiation and tuber bulking, and to elucidate effects on sink developmental processes. Potato plants were grown in controlled environments with treatments at: Tuber initiation (TI), during the first two weeks after initiating short-day photoperiods, and Tuber bulking (TB).
View Article and Find Full Text PDFFlowering in cassava is closely linked with branching. Early-flowering genotypes branch low and abundantly. Although farmers prefer late flowering genotypes because of their erect plant architecture, their usefulness as progenitors in breeding is limited by their low seed production.
View Article and Find Full Text PDFCassava, which produces edible starchy roots, is an important staple food for hundreds of millions of people in the tropics. Breeding of cassava is hampered by its poor flower production, flower abortion, and lack of reproductive prolificacy. The current work determined that ethylene signalling affects floral development in cassava and that the anti-ethylene plant growth regulator silver thiosulfate (STS) mitigates the effects of ethylene on flower development.
View Article and Find Full Text PDFSignal coordination in response to changes in water availability remains unclear, as does the role of embolism events in signaling drought stress. Sunflowers were exposed to two drought treatments of varying intensity while simultaneously monitoring changes in stomatal conductance, acoustic emissions (AE), turgor pressure, surface-level electrical potential, organ-level water potential and leaf abscisic acid (ABA) concentration. Leaf, stem and root xylem vulnerability to embolism were measured with the single vessel injection technique.
View Article and Find Full Text PDFCassava is a starch-storing root crop that is an important source of dietary energy in tropical regions of the world. Genetic improvement of cassava by breeding is hindered by late flowering and sparse flower production in lines that are needed as parents. To advance understanding of regulatory mechanisms in cassava, this work sought to identify and characterize homologs of the FLOWERING LOCUS T (FT) gene.
View Article and Find Full Text PDFCassava is a tropical storage-root crop that serves as a worldwide source of staple food for over 800 million people. Flowering is one of the most important breeding challenges in cassava because in most lines flowering is late and non-synchronized, and flower production is sparse. The FLOWERING LOCUS T (FT) gene is pivotal for floral induction in all examined angiosperms.
View Article and Find Full Text PDFCassava (Manihot esculenta) provides calories and nutrition for more than half a billion people. It was domesticated by native Amazonian peoples through cultivation of the wild progenitor M. esculenta ssp.
View Article and Find Full Text PDFThe application of high-throughput plant phenotyping (HTPP) to continuously study plant populations under relevant growing conditions creates the possibility to more efficiently dissect the genetic basis of dynamic adaptive traits. Toward this end, we employed a field-based HTPP system that deployed sets of sensors to simultaneously measure canopy temperature, reflectance, and height on a cotton (Gossypium hirsutum L.) recombinant inbred line mapping population.
View Article and Find Full Text PDFCassava is an important crop in Africa, Asia, Latin America, and the Caribbean. Cassava can be produced adequately in drought conditions making it the ideal food security crop in marginal environments. Although cassava can tolerate drought stress, it can be genetically improved to enhance productivity in such environments.
View Article and Find Full Text PDFFront Physiol
October 2012
Investigators now have a wide range of analytical tools to use in measuring metabolites, proteins and transcripts in plant tissues. These tools have the potential to assist genetic studies that seek to phenotype genetic lines for heritable traits that contribute to drought tolerance. To be useful for crop breeding, hundreds or thousands of genetic lines must be assessed.
View Article and Find Full Text PDFIn maize, water stress at flowering causes loss of kernel set and productivity. While changes in the levels of sugars and abscisic acid (ABA) are thought to play a role in this stress response, the mechanistic basis and genes involved are not known. A candidate gene approach was used with association mapping to identify loci involved in accumulation of carbohydrates and ABA metabolites during stress.
View Article and Find Full Text PDFDevelopmental responses associated with end-of-day far-red light (EOD-FR) signaling were investigated in maize (Zea mays subspecies mays) seedlings. A survey of genetically diverse inbreds of temperate and tropical/semitropical origins, together with teosinte (Zea mays subspecies parviglumis) and a modern hybrid, revealed distinct elongation responses. A mesocotyl elongation response to the EOD-FR treatment was largely absent in the tropical/semitropical lines, but both hybrid and temperate inbred responses were of the same magnitude as in teosinte, suggesting that EOD-FR-mediated mesocotyl responses were not lost during the domestication or breeding process.
View Article and Find Full Text PDFBackground: Wetlands are species-rich habitats performing valuable ecosystem services such as flood protection, water quality enhancement, food chain support and carbon sequestration. Worldwide, wetlands have been drained to convert them into agricultural land or industrial and urban areas. A realistic estimate is that 50 % of the world's wetlands have been lost.
View Article and Find Full Text PDFAuxin, which has been implicated in multiple biochemical and physiological processes, elicits three classes of genes (Aux/IAAs, SAURs and GH3s) that have been characterized by their early or primary responses to the hormone. A new GH3-like gene was identified from a suppressive subtraction hybridization (SSH) library of pungent pepper (Capsicum chinense L.) cDNAs.
View Article and Find Full Text PDFBackground And Aims: Cassava (Manihot esculenta) is an important food crop in the tropics that has a high growth rate in optimal conditions, but also performs well in drought-prone climates. The objectives of this work were to determine the effects of water deficit and rewatering on the rate of expansion of leaves at different developmental stages and to evaluate the extent to which decreases in cell proliferation, expansion, and delay in development are responsible for reduced growth.
Methods: Glasshouse-grown cassava plants were subjected to 8 d of water deficit followed by rewatering.
Maize seedling water relations and abscisic acid (ABA) levels were measured over 24 h of root chilling (5.5 degrees C). At 2.
View Article and Find Full Text PDFFructans act as storage carbohydrates in wheat (Triticum aestivum L.) stems, and published data indicate that these can account for up to 70% or more of grain dry matter under conditions of drought. The activity of enzymes involved in fructan synthesis (fructosyltransferases) in wheat was measured during development of three high-yielding wheat cultivars (cvv.
View Article and Find Full Text PDF